Please login with your free MJA account to view this article in full
Please note: institutional and Research4Life access to the MJA is now provided through Wiley Online Library.
- 1 Northern Clinical School, University of Sydney, Sydney, NSW
- 2 Royal North Shore Hospital, Sydney, NSW
- 3 Peter MacCallum Cancer Centre, Melbourne, VIC
No relevant disclosures.
- 1. Australian Institute of Health and Welfare. Cancer in Australia 2017 (AIHW Cat. No. CAN 100; Cancer Series No. 101). Canberra: AIHW, 2017. https://www.aihw.gov.au/reports/cancer/cancer-in-australia-2017 (viewed Feb 2017).
- 2. Baade P, Meng X, Youlden D, et al. Time trends and latitudinal differences in melanoma thickness distribution in Australia, 1990–2006. Int J Cancer 2012; 130: 170-178.
- 3. Cancer Institute NSW. Cancer in NSW 2017. May 2017. https://www.cancerinstitute.org.au/cancer-data-pages (viewed May 2017).
- 4. Cancer Council Queensland. Queensland cancer statistics online (QCSOL). 2017. https://cancerqld.org.au/research/queensland-cancer-statistics/queensland-cancer-statistics-online-qcsol/ (viewed Apr 2017).
- 5. Whiteman DC, Whiteman CA, Green AC. Childhood sun exposure as a risk factor for melanoma: a systematic review of epidemiologic studies. Cancer Causes Control 2001; 12: 69-82.
- 6. Gandini S, Sera F, Cattaruzza MS, et al. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer 2005; 41: 45-60.
- 7. Montague M, Borland R, Sinclair C. Slip! Slop! Slap! and SunSmart, 1980–2000: skin cancer control and 20 years of population-based campaigning. Health Educ Behav 2001; 28: 290-305.
- 8. Erdmann F, Lortet-Tieulent J, Schuz J, et al. International trends in the incidence of malignant melanoma 1953–2008 — are recent generations at higher or lower risk? Int J Cancer 2013; 132: 385-400.
- 9. Whiteman DC, Green AC, Olsen CM. The growing burden of invasive melanoma: projections of incidence rates and numbers of new cases in six susceptible populations through 2031. J Invest Dermatol 2016; 136: 1161-1171.
- 10. Boyle P, Parkin DM. Statistical methods for registries. In: Jensen OM, Parkin DM, MacLennan R, et al (editors), Cancer registration: principles and methods (IARC Scientific Publications No. 95). Lyon: International Agency for Research on Cancer, 1991; pp. 126-158. http://www.iarc.fr/en/publications/pdfs-online/epi/sp95/sp95-chap11.pdf (viewed May 2017).
- 11. Australian Bureau of Statistics. 3101.0. Australian demographic statistics, June 2016 (table 52). Dec 2016. http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3101.0Jun%202016?OpenDocument (viewed May 2017).
- 12. Baade PD, Youlden DR, Youl P, et al. Assessment of the effect of migration on melanoma incidence trends in Australia between 1982 and 2010 among people under 30. Acta Derm Venereol 2015; 95: 118-120.
- 13. Kim H, Fay M, Feuer E, Midthune D. Permutation tests for joinpoint regression with applications to cancer rates. Stat Med 2000; 19: 335-351 (correction: 2001; 20: 655).
- 14. Youl PH, Youlden DR, Baade PD. Changes in the site distribution of common melanoma subtypes in Queensland, Australia over time: implications for public health campaigns. Br J Dermatol 2013; 168: 136-144.
- 15. Holman DM, Freeman MB, Shoemaker ML. Trends in melanoma incidence among non-Hispanic whites in the United States, 2005 to 2014. JAMA Dermatol 2018; doi:10.1001/jamadermatol.2017.5541 [Epub ahead of print].
- 16. Coory M, Baade P, Aitken J, et al. Trends for in situ and invasive melanoma in Queensland, Australia, 1982–2002. Cancer Causes Control 2006; 17: 21-27.
- 17. Wei EX, Qureshi AA, Han J, et al. Trends in the diagnosis and clinical features of melanoma in situ (MIS) in US men and women: a prospective, observational study. J Am Acad Dermatol 2016; 75: 698-705.
- 18. Toender A, Kjaer SK, Jensen A. Increased incidence of melanoma in situ in Denmark from 1997 to 2011: results from a nationwide population-based study. Melanoma Res 2014; 24: 488-495.
- 19. Smithson SL, Pan Y, Mar V. Differing trends in thickness and survival between nodular and non-nodular primary cutaneous melanoma in Victoria, Australia. Med J Aust 2015; 203: 20. <MJA full text>
- 20. Meani RE, Pan Y, McLean C, et al. The Victorian Melanoma Service: a 20-year review of an Australian multidisciplinary cancer service. Australas J Dermatol 2016; 57: 235-237.
- 21. Balch CM, Gershenwald JE, Soong SJ, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 2009; 27: 6199-6206.
- 22. Payette MJ, Katz M, Grant-Kels JM. Melanoma prognostic factors found in the dermatopathology report. Clin Dermatol 2009; 27: 53-74.
- 23. Whiteman DC, Stickley M, Watt P, et al. Anatomic site, sun exposure, and risk of cutaneous melanoma. J Clin Oncol 2006; 249: 3172-3177.
- 24. Anderson WF, Pfeiffer RM, Tucker MA, Rosenberg PS. Divergent cancer pathways for early-onset and late-onset cutaneous malignant melanoma. Cancer 2009; 115: 4176-4185.
- 25. Mar V, Roberts H, Wolfe R, et al. Nodular melanoma: a distinct clinical entity and the largest contributor to melanoma deaths in Victoria, Australia. J Am Acad Dermatol 2013; 68: 568-575.
- 26. Karahalios E, English D, Thursfield V, et al. Second primary cancers in Victoria [Internet]. Melbourne: Cancer Council Victoria, 2009. http://www.cancervic.org.au/downloads/cec/Second-Primary-Cancers.pdf (viewed May 2017).
- 27. van der Leest RJ, Flohil SC, Arends LR, et al. Risk of subsequent cutaneous malignancy in patients with prior melanoma: a systematic review and meta-analysis. J Eur Acad Dermatol Venereol 2015; 29: 1053-1062.
- 28. Hirst NG, Gordon LG, Scuffham PA, Green AC. Lifetime cost-effectiveness of skin cancer prevention through promotion of daily sunscreen use. Value Health 2012; 15: 261-268.
- 29. Doran CM, Ling R, Byrnes J, et al. Benefit cost analysis of three skin cancer public education mass-media campaigns implemented in New South Wales, Australia. PLoS One 2016; 11: e0147665.
- 30. Watts CG, Cust AE, Menzies SW, et al. Cost-effectiveness of skin surveillance through a specialized clinic for patients at high risk of melanoma. J Clin Oncol 2017; 35: 63-71.


Abstract
Objectives: To estimate the incidence of cutaneous malignant melanoma in Victoria; to examine trends in its incidence over the past 30 years. Secondary objectives were to examine the anatomic location and thickness of invasive melanoma tumours during the same period.
Design: Population-based, descriptive analysis of Victorian Cancer Registry data.
Participants: Victorian residents diagnosed with melanoma, 1985–2015.
Main outcome measures: Age-standardised incidence of invasive melanoma; estimated annual percentage changes in incidence.
Results: In 2015, the incidence of invasive melanoma in Victoria was 52.9 cases per 100 000 men and 39.2 cases per 100 000 women. Since the mid-1990s, the incidence for men increased annually by 0.9% (95% CI, 0.3–1.5%), but for women there was no significant change (estimated annual percentage change, –0.1%; 95% CI, –0.8% to 0.5%). The incidence of invasive melanoma has been declining in age groups under 55 years of age since 1996 (overall annual change, –1.7%; 95% CI, –2.5% to –0.9%), but is still increasing in those over 55 (overall annual change, 1.6%; 95% CI, 1.0–2.2%). The most frequent site of tumours in men was the trunk (40%), on women the upper (32%) and lower limbs (31%).
Conclusions: Melanoma remains a significant health problem, warranting continued prevention efforts. Awareness of differences in presentation by men and women and in different age groups would facilitate improved screening and risk identification.