Please login with your free MJA account to view this article in full
Please note: institutional and Research4Life access to the MJA is now provided through Wiley Online Library.
- 1 The University of Melbourne, Melbourne, VIC
- 2 Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC
- 3 Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- 4 The Royal Melbourne Hospital, Melbourne, VIC
- 5 Royal Women's Hospital, Melbourne, VIC
- 6 Peter MacCallum Cancer Centre, Melbourne, VIC
- 7 Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC
- 8 The Royal Children's Hospital Melbourne, Melbourne, VIC
- 9 Centre for Medical Psychology and Evidence‐based Decision Making, the University of Sydney, Sydney, NSW
Open access
Open access publishing facilitated by The University of Melbourne, as part of the Wiley ‐ The University of Melbourne agreement via the Council of Australian University Librarians.
We thank the women who took part in the study, as well as the staff of the Parkville Breast Service and the Parkville Familial Cancer Centre for their assistance and support. The study was supported by grants from the National Breast Cancer Foundation (IIRS‐20‐080) and the National Health and Medical Research Council (NHMRC; 1153049). Geoffrey J Lindeman is supported by an NHMRC Leadership Fellowship (1175960) and the Breast Cancer Research Foundation.
No relevant disclosures.
- 1. De Silva DL, James PA, Mann GB, Lindeman GJ. Universal genetic testing of patients with newly diagnosed breast cancer: ready for prime time? Med J Aust 2021; 215: 449‐453. https://www.mja.com.au/journal/2021/215/10/universal‐genetic‐testing‐patients‐newly‐diagnosed‐breast‐cancer‐ready‐prime
- 2. Richards S, Aziz N, Bale S, et al; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17: 405‐424.
- 3. Cancer Institute NSW. BRCA1 and BRCA2: genetic testing (EviQ 620 v.12). Reviewed 2 July 2020. https://www.eviq.org.au/cancer‐genetics/adult/genetic‐testing‐for‐heritable‐pathogenic‐variants/620‐brca1‐and‐brca2‐genetic‐testing (viewed Feb 2023).
- 4. Carver T, Hartley S, Lee A, et al. CanRisk tool: a web interface for the prediction of breast and ovarian cancer risk and the likelihood of carrying genetic pathogenic variants. Cancer Epidemiol Biomarkers Prev 2021; 30: 469‐473.
- 5. Antoniou AC, Hardy R, Walker L, et al. Predicting the likelihood of carrying a BRCA1 or BRCA2 mutation: validation of BOADICEA, BRCAPRO, IBIS, Myriad and the Manchester scoring system using data from UK genetics clinics. J Med Genet 2008; 45: 425‐431.
- 6. Kirk J, Barlow‐Stewart KK, Poplawski NK, et al. Medicare‐funded cancer genetic tests: a note of caution. Med J Aust 2018; 209: 193‐196. https://www.mja.com.au/journal/2018/209/5/medicare‐funded‐cancer‐genetic‐tests‐note‐caution
- 7. Beard C, Monohan K, Cicciarelli L, James PA. Mainstream genetic testing for breast cancer patients: early experiences from the Parkville Familial Cancer Centre. Eur J Hum Genet 2021; 29: 872‐880.
- 8. Kemp Z, Turnbull A, Yost S, et al. Evaluation of cancer‐based criteria for use in mainstream BRCA1 and BRCA2 genetic testing in patients with breast cancer. JAMA Netw Open 2019; 2: e194428.
- 9. Meiser B, Quinn VF, Mitchell G, et al; TFGT Collaborative Group. Psychological outcomes and surgical decisions after genetic testing in women newly diagnosed with breast cancer with and without a family history. Eur J Hum Genet 2018; 26: 972‐983.
- 10. Quinn VF, Meiser B, Kirk J, et al. Streamlined genetic education is effective in preparing women newly diagnosed with breast cancer for decision making about treatment‐focused genetic testing: a randomized controlled noninferiority trial. Genet Med 2017; 19: 448‐456.
- 11. Beitsch PD, Whitworth PW, Hughes K, et al. Underdiagnosis of hereditary breast cancer: are genetic testing guidelines a tool or an obstacle? J Clin Oncol 2019; 37: 453‐460.
- 12. Whitworth PW, Beitsch PD, Patel R, et al. Clinical utility of universal germline genetic testing for patients with breast cancer. JAMA Netw Open 2022; 5: e2232787.
- 13. Douma KFL, Meiser B, Kirk J, et al. Health professionals’ evaluation of delivering treatment‐focused genetic testing to women newly diagnosed with breast cancer. Fam Cancer 2015; 14: 265‐272.
- 14. Scheinberg T, Young A, Woo H, et al. Mainstream consent programs for genetic counseling in cancer patients: a systematic review. Asia Pac J Clin Oncol 2021; 17: 163‐177.
- 15. National Comprehensive Cancer Network. Genetic/familial high‐risk assessment: breast, ovarian, and pancreatic (NCCN clinical practice guidelines in oncology; version 3.2023). https://www.nccn.org/guidelines/guidelines‐detail?category=2&id=1503 (viewed Feb 2023).
- 16. Association for Clinical Genomic Science. ACGS best practice guidelines for variant classification in rare disease. 4 Feb 2020. https://www.acgs.uk.com/media/11631/uk‐practice‐guidelines‐for‐variant‐classification‐v4‐01‐2020.pdf (viewed Feb 2023).
- 17. Lovibond PF, Lovibond SH. The structure of negative emotional states: comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav Res Ther 1995; 33: 335‐343.
- 18. Thewes B, Zachariae R, Christensen S, et al. The Concerns About Recurrence Questionnaire: validation of a brief measure of fear of cancer recurrence amongst Danish and Australian breast cancer survivors. J Cancer Surviv 2015; 9: 68‐79.
- 19. Brehaut JC, O'Connor AM, Wood TJ, et al. Validation of a decision regret scale. Med Decis Making 2003; 23: 281‐292.
- 20. Harris PA, Taylor R, Thielke R, et al. Research electronic data capture (REDCap): a metadata‐driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 2009; 42: 377‐381.
- 21. Harbeck N, Penault‐Llorca F, Cortes J, et al. Breast cancer. Nat Rev Dis Primers 2019; 5: 66.
- 22. Tutt ANJ, Garber JE, Kaufman B, et al; OlympiA Clinical Trial Steering Committee and Investigators. Adjuvant olaparib for patients with BRCA1‐ or BRCA2‐mutated breast cancer. N Engl J Med 2021; 384: 2394‐2405.
- 23. Yang S, Axilbund JE, O'Leary E, et al. Underdiagnosis of hereditary breast and ovarian cancer in Medicare patients: genetic testing criteria miss the mark. Ann Surg Oncol 2018; 25: 2925‐2931.
- 24. Mersch J, Brown N, Pirzadeh‐Miller S, et al. Prevalence of variant reclassification following hereditary cancer genetic testing. JAMA 2018; 320: 1266‐1274.
- 25. Hu C, Hart SN, Gnanaolivu R, et al. A population‐based study of genes previously implicated in breast cancer. N Engl J Med 2021; 384: 440‐451.
- 26. Foulkes WD. The ten genes for breast (and ovarian) cancer susceptibility. Nature Rev Clin Oncol 2021; 28: 259‐260.
- 27. Sun L, Brentnall A, Patel S, et al. A cost‐effectiveness analysis of multigene testing for all patients with breast cancer. JAMA Oncol 2019; 5: 1718‐1730.
- 28. Australian Institute of Health and Welfare. Cancer data in Australia (Cat. no. CAN 122). Updated 4 Oct 2022. https://www.aihw.gov.au/reports/cancer/cancer‐data‐in‐australia/contents/about (viewed Feb 2023).


Abstract
Objective: To determine the feasibility of universal genetic testing of women with newly diagnosed breast cancer, to estimate the incidence of pathogenic gene variants and their impact on patient management, and to evaluate patient and clinician acceptance of universal testing.
Design, setting, participants: Prospective study of women with invasive or high gradein situ breast cancer and unknown germline status discussed at the Parkville Breast Service (Melbourne) multidisciplinary team meeting. Women were recruited to the pilot (12 June 2020 – 22 March 2021) and expansion phases (17 October 2021 – 8 November 2022) of the Mutational Assessment of newly diagnosed breast cancer using Germline and tumour genomICs (MAGIC) study.
Main outcome measures: Germline testing by DNA sequencing, filtered for nineteen hereditary breast and ovarian cancer genes that could be classified as actionable; only pathogenic variants were reported. Surveys before and after genetic testing assessed pilot phase participants’ perceptions of genetic testing, and psychological distress and cancer‐specific worry. A separate survey assessed clinicians’ views on universal testing.
Results: Pathogenic germline variants were identified in 31 of 474 expanded study phase participants (6.5%), including 28 of 429 women with invasive breast cancer (6.5%). Eighteen of the 31 did not meet current genetic testing eligibility guidelines (probability of a germline pathogenic variant ≥ 10%, based on CanRisk, or Manchester score ≥ 15). Clinical management was changed for 24 of 31 women after identification of a pathogenic variant. Including 68 further women who underwent genetic testing outside the study, 44 of 542 women carried pathogenic variants (8.1%). Acceptance of universal testing was high among both patients (90 of 103, 87%) and clinicians; no decision regret or adverse impact on psychological distress or cancer‐specific worry were reported.
Conclusion: Universal genetic testing following the diagnosis of breast cancer detects clinically significant germline pathogenic variants that might otherwise be missed because of testing guidelines. Routine testing and reporting of pathogenic variants is feasible and acceptable for both patients and clinicians.