Connect
MJA
MJA

Neglected tropical diseases in Australia: a narrative review

Johanna Kurcheid, Catherine A Gordon, Naomi E Clarke, Kinley Wangdi, Matthew Kelly, Aparna Lal, Polydor N Mutombo, Dongxu Wang, Mary L Mationg, Archie CA Clements, Stephen Muhi, Richard S Bradbury, Beverley‐Ann Biggs, Wendy Page, Gail Williams, Donald P McManus and Darren Gray
Med J Aust 2022; 216 (10): . || doi: 10.5694/mja2.51533
Published online: 6 June 2022

Summary

  1. • Neglected tropical diseases (NTDs) represent a threat to the health, wellbeing and economic prosperity of billions of people worldwide, often causing serious disease or death.
  2. • Commonly considered diseases of low and middle‐income nations, the presence of NTDs in high income countries such as Australia is often overlooked.
  3. • Seven of the 20 recognised NTDs are endemic in Australia: scabies, soil‐transmitted helminths and strongyloidiasis, echinococcosis, Buruli ulcer, leprosy, trachoma, and snakebite envenoming.
  4. • Dengue, while not currently endemic, poses a risk of establishment in Australia. There are occasional outbreaks of dengue fever, with local transmission, due to introductions in travellers from endemic regions.
  5. • Similarly, the risk of introduction of other NTDs from neighbouring countries is a concern. Many NTDs are only seen in Australia in individuals travelling from endemic areas, but they need to be recognised in health settings as the potential consequences of infection can be severe.
  6. • In this review, we consider the status of NTDs in Australia, explore the risk of introducing and contracting these infections, and emphasise the negative impact they have on the health of Australians, especially Aboriginal and Torres Strait Islander peoples.

  • 1 Australian National University, Canberra, ACT
  • 2 Swiss Tropical and Public Health Institute, Basel, Switzerland
  • 3 QIMR Berghofer Medical Research Institute, Brisbane, QLD
  • 4 Kirby Institute, University of New South Wales, Sydney, NSW
  • 5 National Centre for Naturopathic Medicine, Southern Cross University, Lismore, NSW
  • 6 Curtin University, Perth, WA
  • 7 Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, VIC
  • 8 Federation University Australia, Melbourne, VIC
  • 9 James Cook University, Townsville, QLD
  • 10 University of Queensland, Brisbane, QLD



Acknowledgements: 

We thank Jennifer Shield for her help in edits and comments on the manuscript.

Competing interests:

No relevant disclosures.

  • 1. World Health Organization. Ending the neglect to attain the Sustainable Development Goals: a road map for neglected tropical diseases 2021–2030. https://www.who.int/publications/i/item/9789240010352 (viewed Mar 2021).
  • 2. World Health Organization. Report of the tenth meeting of the WHO Strategic and Technical Advisory Group for Neglected Tropical Diseases. https://cdn.who.int/media/docs/default‐source/ntds/strategic‐and‐advisory‐group‐on‐neglected‐tropical‐diseases‐(stag‐ntds)/tenth‐ntd‐stag‐report‐2017.pdf?sfvrsn=9ec99065_2&download=true (viewed Apr 2022).
  • 3. Molyneux DH, Savioli L, Engels D. Neglected tropical diseases: progress towards addressing the chronic pandemic. Lancet 2017; 389: 312‐325.
  • 4. GBD cause and risk summaries. Lancet, 2020. https://www.thelancet.com/gbd/summaries (viewed Aug 2021).
  • 5. World Health Organization. Accelerating work to overcome the global impact of neglected tropical diseases: a roadmap for implementation. https://apps.who.int/iris/bitstream/handle/10665/70809/WHO_HTM_NTD_2012.1_eng.pdf?sequence=1&isAllowed=y (viewed Apr 2022).
  • 6. United Nations. Transforming our world: the 2030 agenda for Sustainable Development. https://sustainabledevelopment.un.org/post2015/transformingourworld/publication (viewed Apr 2022).
  • 7. World Health Organization. Considerations for implementing mass treatment, active case‐finding and population‐based surveys for neglected tropical diseases in the context of the COVID‐19 pandemic [interim guidance]. https://www.who.int/publications/i/item/WHO‐2019‐nCoV‐neglected‐tropical‐diseases‐2020‐1 (viewed Sept 2020).
  • 8. Hotez PJ. The rise or fall of neglected tropical diseases in East Asia Pacific. Acta Trop 2020; 202: 105182.
  • 9. Rogers MJ, McManus DP, Muhi S, Gordon CA. Membrane technology for rapid point‐of‐care diagnostics for parasitic neglected tropical diseases. Clin Microbiol Rev 2021; 34: e0032920.
  • 10. Gordon CA, Jones M, McManus DP. The history of bancroftian lymphatic filariasis in Australasia and Oceania: is there a threat of re‐occurrence in mainland Australia? Trop Med Infect Dis 2018; 3: 58.
  • 11. Mellanby K. Transmission of scabies. Br Med J 1941; 2: 405.
  • 12. Romani L, Steer AC, Whitfeld MJ, Kaldor JM. Prevalence of scabies and impetigo worldwide: a systematic review. Lancet Infect Dis 2015; 15: 960‐967.
  • 13. Engelman D, Cantey PT, Marks M, et al. The public health control of scabies: priorities for research and action. Lancet 2019; 394: 81‐92.
  • 14. Lokuge B, Kopczynski A, Woltmann A, et al. Crusted scabies in remote Australia, a new way forward: lessons and outcomes from the East Arnhem Scabies Control Program. Med J Aust 2014; 200: 644‐648. https://www.mja.com.au/journal/2014/200/11/crusted‐scabies‐remote‐australia‐new‐way‐forward‐lessons‐and‐outcomes‐east
  • 15. Pruksachatkunakorn C, Wongthanee A, Kasiwat V. Scabies in Thai orphanages. Pediatr Int 2003; 45: 719‐723.
  • 16. Carapetis JR, Connors C, Yarmirr D, et al. Success of a scabies control program in an Australian Aboriginal community. Pediatr Infect Dis J 1997; 16: 494‐499.
  • 17. Kearns TM, Speare R, Cheng AC, et al. Impact of an ivermectin mass drug administration on scabies prevalence in a remote Australian Aboriginal community. PLoS Negl Trop Dis 2015; 9: e0004151.
  • 18. Wong LC, Amega B, Barker R, et al. Factors supporting sustainability of a community‐based scabies control program. Australas J Dermatol 2002; 43: 274‐277.
  • 19. La Vincente S, Kearns T, Connors C, et al. Community management of endemic scabies in remote aboriginal communities of northern Australia: low treatment uptake and high ongoing acquisition. PLoS Negl Trop Dis 2009; 3: e444.
  • 20. Engelman D, Cantey PT, Marks M, et al. The public health control of scabies: priorities for research and action. Lancet 2019; 394: 81‐92.
  • 21. Global Health Metrics. Intestinal nematode infections — Level 3 cause. Lancet 2020; 396: S28‐S29.
  • 22. Bethony J, Brooker S, Albonico M, et al. Soil‐transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 2006; 367: 1521‐1532.
  • 23. Mutombo PN, Man NWY, Nejsum P, et al. Diagnosis and drug resistance of human soil‐transmitted helminth infections: a public health perspective. Adv Parasitol 2019; 104: 247‐326.
  • 24. Caruana SR, Kelly HA, Ngeow JY, et al. Undiagnosed and potentially lethal parasite infections among immigrants and refugees in Australia. J Travel Med 2006; 13: 233‐239.
  • 25. Ryan N, Plackett M, Dwyer B. Parasitic infections of refugees. Med J Aust 1988; 148: 491‐494.
  • 26. Robertson G, Lade C, Norton R, Bradbury R. The burden of helminth disease in Queensland, 2003–2013 [poster]. Melbourne: Australian Society of Microbiology, 2014.
  • 27. Shield J, Aland K, Kearns T, et al. Intestinal parasites of children and adults in a remote Aboriginal community of the Northern Territory, Australia, 1994–1996. Western Pac Surveill Response J 2015; 6: 44‐51.
  • 28. Fryar D, Hagan S. Pilot screening program for intestinal parasites and anaemia in adults in a Top End Aboriginal community. Northern Territory Communicable Diseases Bulletin 1997; 4: 20‐21.
  • 29. Goldsmid JM. Human infection with “Ascaris suum” in Tasmania? Ann ACTM 2005; 6: 16.
  • 30. Prociv P, Luke RA. The changing epidemiology of human hookworm infection in Australia. Med J Aust 1995; 162: 150‐154.
  • 31. Sweet WC. Final report of the Australian Hookworm Campaign: 1st October 1919 to 30th September 1924. Brisbane: Australian Hookworm Campaign; 1924. https://nla.gov.au/nla.obj‐648199287/view?partId=nla.obj‐648199552 (viewed Apr 2022).
  • 32. Smout FA, Skerratt LF, Butler JR, et al. The hookworm Ancylostoma ceylanicum: an emerging public health risk in Australian tropical rainforests and Indigenous communities. One Health 2017; 3: 66‐69.
  • 33. Speare R, Bradbury RS, Croese J. A case of Ancylostoma ceylanicum infection occurring in an Australian soldier returned from Solomon Islands. Korean J Para 2016; 54: 533.
  • 34. Koehler AV, Bradbury RS, Stevens MA, et al. Genetic characterization of selected parasites from people with histories of gastrointestinal disorders using a mutation scanning‐coupled approach. Electrophoresis 2013; 34: 1720‐1728.
  • 35. Davies J, Majumdar SS, Forbes R, et al. Hookworm in the Northern Territory: down but not out. Med J Aust 2013; 198: 278‐281. https://www.mja.com.au/journal/2013/198/5/hookworm‐northern‐territory‐down‐not‐out
  • 36. Crowe AL, Smith P, Ward L, et al. Decreasing prevalence of Trichuris trichiura (whipworm) in the Northern Territory from 2002 to 2012. Med J Aust 2014; 200: 286‐289. https://www.mja.com.au/journal/2014/200/5/decreasing‐prevalence‐trichuris‐trichiura‐whipworm‐northern‐territory‐2002‐2012
  • 37. Page W, Judd JA, Bradbury RS. The unique life cycle of Strongyloides stercoralis and implications for public health action. Trop Med Infect Dis 2018; 3: 53.
  • 38. Marcos LA, Terashima A, DuPont HL, Gotuzzo E. Strongyloides hyperinfection syndrome: an emerging global infectious disease. Trans R Soc Trop Med Hyg 2008; 102: 314‐318.
  • 39. World Health Organization. Control of neglected tropical diseases: strongyloidiasis. https://www.who.int/teams/control‐of‐neglected‐tropical‐diseases/soil‐transmitted‐helminthiases/strongyloidiasis (viewed Apr 2022).
  • 40. Page W, Speare R. Chronic strongyloidiasis — don’t look and you won’t find. Aust Fam Physician 2016; 45: 40‐44.
  • 41. Einsiedel L, Fernandes L. Strongyloides stercoralis: a cause of morbidity and mortality for Indigenous people in Central Australia. Intern Med J 2008; 38: 697‐703.
  • 42. Johnston FH, Morris PS, Speare R, et al. Strongyloidiasis: a review of the evidence for Australian practitioners. Aust J of Rural Health 2005; 13: 247‐254.
  • 43. Prociv P, Luke R. Observations on strongyloidiasis in Queensland Aboriginal communities. Med J Aust 1993; 158: 160‐163.
  • 44. Hays R, Esterman A, McDermott R. Control of chronic Strongyloides stercoralis infection in an endemic community may be possible by pharmacological means alone: results of a three‐year cohort study. PLoS Negl Trop Dis 2017; 11: e0005825.
  • 45. Page WA, Dempsey K, McCarthy JS. Utility of serological follow‐up of chronic strongyloidiasis after anthelminthic chemotherapy. Trans R Soc Trop Med Hyg 2006; 100: 1056‐1062.
  • 46. Miller A, Young EL, Tye V, et al. A community‐directed integrated Strongyloides control program in Queensland, Australia. Trop Med and Infect Dis 2018; 3: 48.
  • 47. Page WA, Judd JA, MacLaren DJ, Buettner P. Integrating testing for chronic strongyloidiasis within the Indigenous adult preventive health assessment system in endemic communities in the Northern Territory, Australia: an intervention study. PLoS Negl Trop Dis 2020; 14: e0008232.
  • 48. Shield J, Braat S, Watts M, et al. Seropositivity and geographical distribution of Strongyloides stercoralis in Australia: a study of pathology laboratory data from 2012–2016. PLoS Negl Trop Dis 2021; 15: e0009160.
  • 49. Gordon CA, Shield JM, Bradbury RS, et al. HTLV‐1 and Strongyloides in Australia: the worm lurking beneath. Adv Parasitol 2021; 111: 119‐201.
  • 50. Hanieh S, Ryan N, Biggs B. Assessing enteric helminths in refugees, asylum seekers and new migrants. Microbiology Australia 2016; March: 15‐9.
  • 51. Beknazarova M, Whiley H, Judd J, et al. Argument for inclusion of strongyloidiasis in the Australian national notifiable disease list. Trop Med and Infect Dis 2018; 3: 61.
  • 52. Kearns TM, Currie BJ, Cheng AC, et al. Strongyloides seroprevalence before and after an ivermectin mass drug administration in a remote Australian Aboriginal community. PLoS Negl Trop Dis 2017; 11: e0005607.
  • 53. Kukuruzovic R, Robins‐Browne RM, Anstey NM, Brewster DR. Enteric pathogens, intestinal permeability and nitric oxide production in acute gastroenteritis. Pediatr Infect Dis J 2002; 21: 730‐739.
  • 54. De Silva S, Saykao P, Kelly H, et al. Chronic Strongyloides stercoralis infection in Laotian immigrants and refugees 7–20 years after resettlement in Australia. Epidemiol Infect 2002; 128: 439‐444.
  • 55. Looke DF, Robson J. 9: Infections in the returned traveller. Med J Aust 2002; 177: 212‐219.
  • 56. Swaminathan A, Torresi J, Schlagenhauf P, et al. A global study of pathogens and host risk factors associated with infectious gastrointestinal disease in returned international travellers. J Infect 2009; 59: 19‐27.
  • 57. Soulsby HM, Hewagama S, Brady S. Case series of four patients with Strongyloides after occupational exposure. Med J Aust 2012; 196: 444. https://www.mja.com.au/journal/2012/196/7/case‐series‐four‐patients‐strongyloides‐after‐occupational‐exposure
  • 58. Jenkins DJ. Cystic echinococcosis in Australia: the current situation. Southeast Asian J Trop Med Public Health; 2004; 35 (Suppl): 183‐188.
  • 59. World Health Organization. Factsheet: echinococcosis, 2021. https://www.who.int/news‐room/fact‐sheets/detail/echinococcosis (viewed Apr 2022).
  • 60. McManus DP, Zhang W, Li J, Bartley PB. Echinococcosis. Lancet 2003; 362: 1295‐1304.
  • 61. Jenkins DJ. Echinococcus granulosus in Australia, widespread and doing well! Parasitol Int 2006; 55 (Suppl: S203‐S206).
  • 62. O’Hern JA, Cooley L. A description of human hydatid disease in Tasmania in the post‐eradication era. Med J Aust 2013; 199: 117‐120. https://www.mja.com.au/journal/2013/199/2/description‐human‐hydatid‐disease‐tasmania‐post‐eradication‐era
  • 63. Lin M, Roche P, Spencer J, et al. Australia’s notifiable diseases status, 2000. Commun Dis Intell 2002; 26: 118‐203.
  • 64. Owen R, Roche PW, Hope K, et al. Australia’s notifiable diseases status, 2005: annual report of the National Notifiable Diseases Surveillance System. Commun Dis Intell Q Rep 2007; 31: 1‐70.
  • 65. Jenkins DJ. Hydatid control in Australia: where it began, what we have achieved and where to from here. Int J Parasitol 2005; 35: 733‐740.
  • 66. van Ravensway J, Benbow ME, Tsonis AA, et al. Climate and landscape factors associated with Buruli ulcer incidence in Victoria, Australia. PLoS One 2012; 7: e51074.
  • 67. Loftus MJ, Trubiano JA, Tay EL, et al. The incubation period of Buruli ulcer (Mycobacterium ulcerans infection) in Victoria, Australia remains similar despite changing geographic distribution of disease. PLoS Negl Trop Dis 2018; 12: e0006323.
  • 68. Omansen TF, Erbowor‐Becksen A, Yotsu R, et al. Global epidemiology of Buruli ulcer, 2010–2017, and analysis of 2014 WHO programmatic targets. Emerg Infect Dis 2019; 25: 2183‐2190.
  • 69. Buultjens AH, Vandelannoote K, Meehan CJ, et al. Comparative genomics shows that Mycobacterium ulcerans migration and expansion preceded the rise of Buruli ulcer in southeastern Australia. Appl Environ Microbiol 2018; 84: 2612‐2617.
  • 70. O’Brien D, Athan E, Blasdell K, De Barro P. Tackling the worsening epidemic of Buruli ulcer in Australia in an information void: time for an urgent scientific response. Med J Aust 2018; 208: 287‐289. https://www.mja.com.au/journal/2018/208/7/tackling‐worsening‐epidemic‐buruli‐ulcer‐australia‐information‐void‐time‐urgent
  • 71. O’Brien DP, Friedman D, Hughes A, et al. Antibiotic complications during the treatment of Mycobacterium ulcerans disease in Australian patients. Intern Med J 2017; 47: 1011‐1019.
  • 72. Wynne JW, Stinear TP, Athan E, et al. Low incidence of recurrent Buruli ulcers in treated Australian patients living in an endemic region. PLoS Negl Trop Dis 2018; 12: e0006724.
  • 73. Steffen CM, Smith M, McBride WJ. Mycobacterium ulcerans infection in North Queensland: the “Daintree ulcer”. ANZ J Surg 2010; 80: 732‐736.
  • 74. Hayman J. Clinical features of Mycobacterium ulcerans infection. Australas J Dermatol 1985; 26: 67‐73.
  • 75. Lewin E. Melbourne GPs told to consider Buruli ulcers when assessing lesions. News GP 2021; 25 Feb. https://www1.racgp.org.au/newsgp/clinical/buruli‐ulcers‐discovered‐in‐non‐coastal‐areas‐in‐v (viewed Apr 2021).
  • 76. Muleta A J, Lappan R, Stinear TO, Greening C. Understanding the transmission of Mycobacterium ulcerans: a step towards controlling Buruli ulcer. PLOS Negl Trop Dis 2021; 15: e0009678.
  • 77. Carson C, Lavender CJ, Handasyde KA, et al. Potential wildlife sentinels for monitoring the endemic spread of human Buruli ulcer in south‐east Australia. PLoS Negl Trop Dis 2014; 8: e2668.
  • 78. Fyfe JAM, Lavender CJ, Handasyde KA, et al. A major role for mammals in the ecology of Mycobacterium ulcerans. PLoS Negl Trop Dis 2010; 4: e791.
  • 79. Lavender CJ, Fyfe JAM, Azuolas J, et al. Risk of Buruli ulcer and detection of Mycobacterium ulcerans in mosquitoes in southeastern Australia. PLoS Negl Trop Dis 2011; 5: e1305.
  • 80. Röltgen K, Pluschke G, Johnson PDR, Fyfe J. Mycobacterium ulcerans DNA in bandicoot excreta in Buruli ulcer‐endemic area, Northern Queensland, Australia. Emerg Infect Dis 2017; 23: 2042‐2045.
  • 81. Yerramilli A, Tay EL, Stewardson AJ, et al. The location of Australian Buruli ulcer lesions — implications for unravelling disease transmission. PLoS Negl Trop Dis 2017; 11: e0005800.
  • 82. Genever G. Queensland’s Black Leper Colony. Queensland Review 2016; 15: 59‐68.
  • 83. Australian Government Department of Health. National notifiable diseases surveillance system 2020. http://www9.health.gov.au/cda/source/cda‐index.cfm (viewed Dec 2020).
  • 84. Australian Government Department of Health. National notifiable diseases surveillance system 2021. http://www9.health.gov.au/cda/source/rpt_3.cfm (viewed Feb 2021).
  • 85. Bourne AJ, Dymock RB, Parry WD, Turner TW. Leprosy in Indo‐Chinese refugees. Med J Aust 1980; 1: 275‐276.
  • 86. van Hal SJ, Hudson BJ. Leprosy: an uncommon infection with varied presentations. Med J Aust 2006; 184: 473‐474.
  • 87. Barkla S, Modi S. Lepromatous leprosy: a rare presentation in Australia. Australas Med J 2013; 6: 175‐177.
  • 88. Mak DB, Platt EM, Heath CH. Leprosy transmission in the Kimberley, Western Australia: still a reality in 21st‐century Australia. Med J Aust 2003; 179: 452. https://www.mja.com.au/journal/2003/179/8/leprosy‐transmission‐kimberley‐western‐australia‐still‐reality‐21st‐century
  • 89. Hempenstall A, Smith S, Hanson J. Leprosy in Far North Queensland: almost gone, but not to be forgotten. Med J Aust 2019; 211: 182‐183. https://www.mja.com.au/journal/2019/211/4/leprosy‐far‐north‐queensland‐almost‐gone‐not‐be‐forgotten
  • 90. Taylor HR, Anjou MD. Trachoma in Australia: an update. Clin Exp Ophthalmol 2013; 41: 508‐512.
  • 91. Australian trachoma surveillance report 2017. Sydney: Kirby Institute, UNSW Sydney; 2018.
  • 92. Mak DB, O’Neill LM, Herceg A, McFarlane H. Prevalence and control of trachoma in Australia, 1997–2004. Commun Dis Intell Q Rep 2006; 30: 236‐247.
  • 93. Taylor HR, Fox SS, Xie J, et al. The prevalence of trachoma in Australia: the National Indigenous Eye Health Survey. Med J Aust 2010; 192: 248‐253. https://www.mja.com.au/journal/2010/192/5/prevalence‐trachoma‐australia‐national‐indigenous‐eye‐health‐survey
  • 94. Michel CE, Roper KG, Divena MA, et al. Correlation of clinical trachoma and infection in Aboriginal communities. PLoS Negl Trop Dis 2011; 5: e986.
  • 95. World Health Organization. Snakebite envenoming 2019. https://www.who.int/news‐room/fact‐sheets/detail/snakebite‐envenoming (viewed Feb 2021).
  • 96. Johnston CI, Ryan NM, Page CB, et al. The Australian snakebite project, 2005–2015 (ASP‐20). Med J Aust 2017; 207: 119‐125. https://www.mja.com.au/journal/2017/207/3/australian‐snakebite‐project‐2005‐2015‐asp‐20
  • 97. Australian Government Department of Health. Australian national notifiable diseases by disease type, 2019. https://www1.health.gov.au/internet/main/publishing.nsf/Content/cda‐surveil‐nndss‐casedefs‐distype.htm (viewed Jan 2021).
  • 98. Imrie A. Dengue introduced by travellers, Australia. Microbiol Aust 2018; 39: 67‐71.
  • 99. Queensland Health. Dengue fever update: Rockhampton, 2019. https://www.health.qld.gov.au/cq/about/news/articles/dengue‐fever‐update‐rockhampton (viewed Jan 2021).
  • 100. Whelan PI, Kurucz N, Pettit WJ, Krause V. Elimination of Aedes aegypti in northern Australia, 2004–2006. J Vector Ecol 2020; 45: 118‐126.
  • 101. Gordon CA, McManus DP, Jones MK, et al. The increase of exotic zoonotic helminth infections: the impact of urbanization, climate change and globalization. Adv Parasitol 2016; 91: 311‐397.
  • 102. Ryan PA, Turley AP, Wilson G, et al. Establishment of w Mel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia. Gates Open Res 2019; 3: 1547.
  • 103. Lidani KCF, Andrade FA, Bavia L, et al. Chagas disease: from discovery to a worldwide health problem. Front Public Health 2019; 7: 166.
  • 104. Chaves NA, Pacton G, Biggs, BA, et al; Australasian Society for Infectious Diseases and Refugee Health Network of Australia Guidelines writing group. Recommendations for comprehensive post‐arrival health assessment for people from refugee‐like backgrounds; 2nd ed. Sydney: ASID, 2016. https://www.asid.net.au/documents/item/1225 (viewed Apr 2022).

Author

remove_circle_outline Delete Author
add_circle_outline Add Author

Comment
Do you have any competing interests to declare? *

I/we agree to assign copyright to the Medical Journal of Australia and agree to the Conditions of publication *
I/we agree to the Terms of use of the Medical Journal of Australia *
Email me when people comment on this article

Online responses are no longer available. Please refer to our instructions for authors page for more information.