Towards a theoretically informed policy against a rakghoul plague outbreak

Dimitrios-Georgios Kontopoulos, Theano Kontopoulou, Hsi-Cheng Ho and Bernardo García-Carreras
Med J Aust 2017; 207 (11): 490-494. || doi: 10.5694/mja17.00792


A long time ago in a galaxy far, far away, the Sith Lord Karness Muur engineered the rakghoul plague, a disease that transformed infected humans into near-mindless predatory rakghouls. At its peak, the disease infected millions of individuals, giving rise to armies of rakghouls on a number of planets. Whether rakghoul populations have persisted until this day is not known, making a rakghoul invasion on Earth not completely improbable. Further, a strategy for defence against an outbreak of the disease on Earth has not yet been proposed. To fill this glaring gap, we developed the first mathematical model of the population dynamics of humans and rakghouls during a rakghoul plague outbreak. Using New South Wales as a model site, we then obtained ensembles of model predictions for the outcome of the rakghoul plague in two different disease control strategy scenarios (population evacuation and military intervention), and in the absence thereof. Finally, based on these predictions, we propose a set of policy guidelines for successfully controlling and eliminating outbreaks of the rakghoul plague in Australian states.

Please login with your free MJA account to view this article in full

  • Dimitrios-Georgios Kontopoulos1
  • Theano Kontopoulou2
  • Hsi-Cheng Ho1
  • Bernardo García-Carreras1

  • 1 Imperial College London, Silwood Park Campus, Ascot, Berkshire, United Kingdom
  • 2 Evangelismos Hospital, Athens, Greece


We thank Samraat Pawar for providing comments on an early draft of our article.

Competing interests:

No relevant disclosures.

  • 1. Freed A, Ross D, McKenna M, et al. Star Wars: the Old Republic. Volume one: Blood of the Empire. Milwaukie (OR): Dark Horse Comics, 2011.
  • 2. Stover M, Rood B. The Tenebrous way. Star Wars Insider 2011; (130): 22-29.
  • 3. Luceno J. Star Wars: Darth Plagueis. London: Arrow Books, 2012.
  • 4. Ostrander J, Duursema J, Dekraker A, et al. Star Wars legends epic collection. Legacy, volume 1. New York (NY): Marvel Worldwide, 2016.
  • 5. Miller JJ, Harrison M, Hepburn S, et al. Star Wars: Vector, volume 1. Milwaukie (OR): Dark Horse Comics, 2009.
  • 6. Williams R, Ostrander J, Weaver D, et al. Star Wars: Vector, volume 2. Milwaukie (OR): Dark Horse Comics, 2009.
  • 7. Munz P, Hudea I, Imad J, Smith? RJ. When zombies attack! Mathematical modelling of an outbreak of zombie infection. In: Tchuenche JM, Chiyaka C, editors. Infectious disease modelling research progress. Hauppauge (NY): Nova Science Publishers, 2009; pp 133-150.
  • 8. Witkowski C, Blais B. Bayesian analysis of epidemics — zombies, influenza, and other diseases. arXiv 2013; 1311.6376. (accessed: Sept 2017).
  • 9. Smith? RJ. Mathematical modelling of zombies. Ottawa (ON): University of Ottawa Press, 2014.
  • 10. Alemi AA, Bierbaum M, Myers CR, Sethna JP. You can run, you can hide: the epidemiology and statistical mechanics of zombies. Phys Rev E 2015; 92: 52801.
  • 11. Otto SP, Day T. A biologist’s guide to mathematical modeling in ecology and evolution. Princeton (NJ): Princeton University Press, 2007.
  • 12. Australian Bureau of Statistics. 3101.0. Australian demographic statistics, Jun 2016. (accessed Feb 2017).
  • 13. Australian Bureau of Statistics. Deaths, year of registration, summary data, sex, states, territories and Australia. (accessed Feb 2017).
  • 14. Australian Government, Department of Defence. Defence annual report 2015–16. Volume one: performance, governance and accountability. (accessed Feb 2017).
  • 15. Redmond AD, Mahoney PF, Ryan JM, Macnab C, editors. ABC of conflict and disaster. Malden (MA): Blackwell Publishing, 2006.
  • 16. Australian Army. Enhanced F88 [website]. Dec 2016. (accessed June 2017).
  • 17. O’Bannon D. The return of the living dead [film]. Hemdale Film Corporation, USA, 1985.
  • 18. Noussias Y. Evil: In the time of heroes [film]. Audio Visual Enterprises, Greece, 2009.
  • 19. Riley S. Large-scale spatial-transmission models of infectious disease. Science 2007; 316: 1298-1301.
  • 20. Grenfell B, Harwood J. (Meta)population dynamics of infectious diseases. Trends Ecol Evol 1997; 12: 395-399.
  • 21. Lloyd AL, May RM. Spatial heterogeneity in epidemic models. J Theor Biol 1996; 179: 1-11.
  • 22. Ostfeld RS, Glass GE, Keesing F. Spatial epidemiology: an emerging (or re-emerging) discipline. Trends Ecol Evol 2005; 20: 328-336.
  • 23. Noakes CJ, Beggs CB, Sleigh PA, et al. Modelling the transmission of airborne infections in enclosed spaces. Epidemiol Infect 2006; 134: 1082-1091.
  • 24. Sanz J, Xia C-Y, Meloni S, et al. Dynamics of interacting diseases. Phys Rev X 2014; 4: 041005.
  • 25. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5). Washington (DC): American Psychiatric Publishing, 2013.


remove_circle_outline Delete Author
add_circle_outline Add Author

Do you have any competing interests to declare? *

I/we agree to assign copyright to the Medical Journal of Australia and agree to the Conditions of publication *
I/we agree to the Terms of use of the Medical Journal of Australia *
Email me when people comment on this article

You do not have permission to add a response to this article.