2011 Update to National Heart Foundation of Australia and Cardiac Society of Australia and New Zealand Guidelines for the prevention, detection and management of chronic heart failure in Australia, 2006

Henry Krum, Michael V Jelinek, Simon Stewart, Andrew Sindone and John J Atherton
Med J Aust 2011; 194 (8): 405-409. || doi: 10.5694/j.1326-5377.2011.tb03031.x
Published online: 18 April 2011
Pharmacological therapy
Treatment of symptomatic systolic heart failure
Drugs to avoid or use with caution in CHF

The 2006 guidelines listed a number of drugs to be avoided in treating patients with CHF. Based on recent trial evidence, the following drugs should be added to that list.

While the 2006 guidelines suggested that metformin should be avoided in patients with CHF, it appears to be safe in recent analyses of patients with heart failure, except in cases of concomitant renal impairment.25

Biventricular pacing

The 2006 guidelines stated that biventricular pacing, or cardiac-resynchronisation therapy (CRT), should be considered in patients who fulfil all the following criteria:

Three RCTs have reported favourable effects of CRT on left-ventricular remodelling in patients with relatively asymptomatic or mildly symptomatic heart failure associated with left-ventricular systolic dysfunction and a wide QRS complex.29-31 One of these trials found that prophylactic CRT in combination with an implantable cardioverter defibrillator (ICD) resulted in a 34% reduction in risk of death or heart failure events, with the benefit driven by a 41% reduction in heart failure events.29 All patients had a history of heart failure symptoms, with the majority being symptomatic at the time of enrolment. A significantly greater benefit was observed in patients with a QRS duration ≥ 150 ms. There was no difference in mortality; however, the study was not powered to determine this.

A more recent study reported a significant 25% reduction in risk of death and a 32% reduction in hospitalisation for heart failure with combined ICD–CRT, compared with ICD therapy alone, in patients with mild to moderately symptomatic systolic heart failure associated with a wide QRS complex. A significant benefit was seen in patients with NYHA Class II symptoms.32 Although there were more early adverse events with combined ICD–CRT, including lead dislodgement and coronary sinus dissection, a greater benefit was seen in patients with a QRS duration ≥ 150 ms and in the presence of a left bundle branch block pattern.32

In addition to the 2006 recommendations for CRT, for patients in whom implantation of an ICD is planned to reduce the risk of sudden death, it is reasonable to also consider CRT to reduce the risk of death and heart failure events if the LVEF is ≤ 30% and the QRS duration is ≥ 150 ms (left bundle branch block morphology), with associated mild symptoms (NYHA Class II) despite optimal medical therapy (Grade A recommendation).

Treatment of associated disorders
Cardiac arrhythmia
Atrial fibrillation

The 2006 guidelines indicated that pharmacotherapy remains an important mainstay for patients with CHF who develop atrial fibrillation (AF), although episodic electrical cardioversion may be required for those who experience symptomatic deterioration. Anti-arrhythmic therapy usually requires amiodarone, or occasionally sotalol, and long-term anticoagulation is required unless an acute, reversible cause of AF can be identified. If sinus rhythm cannot be maintained for prolonged periods, the guidelines advised that therapy should be directed at controlling ventricular response rate (with digoxin, β-blockers or amiodarone) and reducing thromboembolic risk with warfarin. While it was noted that electrophysiological ablation prevents recurrence of atrial flutter in about 95% of cases, the role of curative ablation for AF was considered controversial.

A large multicentre trial involving patients with CHF, an LVEF ≤ 35% and a history of AF recently showed that the control of ventricular rate with the use of digoxin and β-blockers, and the use of warfarin anticoagulation, was easier than and as effective on the primary end point of death from cardiovascular causes as therapy designed to restore and maintain sinus rhythm.38

Another small study found that pulmonary vein isolation therapy for AF in patients with CHF resulted in a high rate of freedom from AF, with improved symptomatic status, exercise tolerance and LVEF.39 For patients with CHF due to left-ventricular systolic dysfunction associated with drug-resistant symptomatic AF, the study demonstrated the superiority of a rhythm-control strategy based on pulmonary vein isolation compared with a ventricular rate-control strategy based on atrioventricular node ablation with biventricular pacing.

Rate control (rather than rhythm control), together with warfarin anticoagulation, is the preferred method of treating patients with CHF and AF if their condition permits this (Grade B recommendation). The role of atrioventricular node ablation and pulmonary vein isolation for these patients requires further research, and no specific recommendation can be made at this stage.

Provenance: Not commissioned; externally peer reviewed.

  • Henry Krum1
  • Michael V Jelinek2
  • Simon Stewart3
  • Andrew Sindone4
  • John J Atherton5

  • 1 Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC.
  • 2 Department of Cardiology, St Vincent’s Hospital, Melbourne, VIC.
  • 3 Department of Preventative Cardiology, Baker IDI Heart and Diabetes Institute, Melbourne, VIC.
  • 4 Heart Failure Unit and Department of Cardiac Rehabilitation, Concord Hospital, Sydney, NSW.
  • 5 Department of Cardiology, Royal Brisbane and Women’s Hospital, Brisbane, QLD.


Competing interests:

Many members of the guidelines writing panel have received paid honoraria for work performed on behalf of manufacturers of therapies described in the guidelines. However, no members of the writing panel stand to gain financially from their involvement in the guidelines.

  • 1. Australian Institute of Health and Welfare. National hospital morbidity database. Separation statistics by principal diagnosis in ICD-10-AM, Australia, 1998-99 to 2007-08. (accessed Mar 2011).
  • 2. Australian Bureau of Statistics. Causes of death, Australia, 2008. Canberra: ABS, 2010. (ABS Catalogue No. 3303.0.)
  • 3. National Heart Foundation of Australia and the Cardiac Society of Australia and New Zealand (Chronic Heart Failure Guidelines Expert Writing Panel). Guidelines for the prevention, detection and management of chronic heart failure in Australia, 2006. National Heart Foundation of Australia, 2006.
  • 4. Troughton RW, Frampton CM, Yandle TG, et al. Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. Lancet 2000; 355: 1126-1130.
  • 5. Jourdain P, Jondeau G, Funck F, et al. Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure: the STARS-BNP Multicenter Study. J Am Coll Cardiol 2007; 49: 1733-1739.
  • 6. Pfisterer M, Buser P, Rickli H, et al. BNP-guided vs symptom-guided heart failure therapy: the Trial of Intensified vs Standard Medical Therapy in Elderly Patients with Congestive Heart Failure (TIME-CHF) randomized trial. JAMA 2009; 301: 383-392.
  • 7. Lainchbury JG, Troughton RW, Strangman KM, et al. N-terminal pro-B-type natriuretic peptide-guided treatment for chronic heart failure: results from the BATTLESCARRED (NT-proBNP-Assisted Treatment To Lessen Serial Cardiac Readmissions and Death) trial. J Am Coll Cardiol 2009; 55: 53-60.
  • 8. Felker GM, Hasselblad V, Hernandez AF, O’Connor CM. Biomarker-guided therapy in chronic heart failure: a meta-analysis of randomized controlled trials. Am Heart J 2009; 158: 422-430.
  • 9. Porapakkham P, Porapakkham P, Zimmet H, et al. B-type natriuretic peptide-guided heart failure therapy: a meta-analysis. Arch Intern Med 2010; 170: 507-514.
  • 10. Flynn KE, Pina IL, Whellan DJ, et al. Effects of exercise training on health status in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 2009; 301: 1451-1459.
  • 11. O’Connor CM, Whellan DJ, Lee KL, et al. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 2009; 301: 1439-1450.
  • 12. van Veldhuisen DJ, Cohen-Solal A, Böhm M, et al. Beta-blockade with nebivolol in elderly heart failure patients with impaired and preserved left ventricular ejection fraction: data from SENIORS (Study of Effects of Nebivolol Intervention on Outcomes and Rehospitalization in Seniors With Heart Failure). J Am Coll Cardiol 2009; 53: 2150-2158.
  • 13. Edes I, Gasior Z, Wita K. Effects of nebivolol on left ventricular function in elderly patients with chronic heart failure: results of the ENECA study. Eur J Heart Fail 2005; 7: 631-639.
  • 14. Flather MD, Shibata MC, Coats AJ, et al. Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS). Eur Heart J 2005; 26: 215-225.
  • 15. Konstam MA, Neaton JD, Dickstein K, et al. Effects of high-dose versus low-dose losartan on clinical outcomes in patients with heart failure (HEAAL study): a randomised, double-blind trial. Lancet 2009; 374: 1840-1848.
  • 16. Zannad F, McMurray JJ, Krum H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 2011; 364: 11-21. Epub 2010 Nov 14.
  • 17. Tavazzi L, Maggioni AP, Marchioli R, et al; GISSI-HF Investigators. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet 2008; 372: 1223-1230.
  • 18. Swedberg K, Komajda M, Böhm M, et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 2010; 376: 875-885.
  • 19. Fox K, Ford I, Steg PG, et al. Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebo-controlled trial. Lancet 2008; 372: 807-816.
  • 20. Anker SD, Comin Colet J, Filippatos G, et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med 2009; 361: 2436-2448.
  • 21. Kober L, Torp-Pedersen C, McMurray JJ, et al; Dronedarone Study Group. Increased mortality after dronedarone therapy for severe heart failure. N Engl J Med 2008; 358: 2678-2687.
  • 22. Chien AJ, Rugo HS. The cardiac safety of trastuzumab in the treatment of breast cancer. Expert Opin Drug Saf 2010; 9: 335-346.
  • 23. Garcia-Alvarez A, Garcia-Albeniz X, Esteve J, et al. Cardiotoxicity of tyrosine-kinase-targeting drugs. Cardiovasc Hematol Agents Med Chem 2010; 8: 11-21.
  • 24. Cohn JN, Pfeffer MA, Rouleau J, et al; MOXCON Investigators. Adverse mortality effect of central sympathetic inhibition with sustained-release moxonidine in patients with heart failure (MOXCON). Eur J Heart Fail 2003; 5: 659-667.
  • 25. Evans JM, Doney AS, AlZadjali MA, et al. Effect of metformin on mortality in patients with heart failure and type 2 diabetes mellitus. Am J Cardiol 2010; 106: 1006-1010.
  • 26. Teerlink JR, Massie BM, Colucci WS, et al. Levosimendan reduces length of initial hospital stay: the REVIVE II Study. J Card Fail 2006; 12 Suppl 1: S84.
  • 27. Packer M. REVIVE II: Multicenter placebo-controlled trial of levosimendan on clinical status in acutely decompensated heart failure [abstract]. Circulation 2005; 112: 3363.
  • 28. Mebazaa A, Nieminen MS, Packer M, et al. Levosimendan vs dobutamine for patients with acute decompensated heart failure: the SURVIVE Randomized Trial. JAMA 2007; 297: 1883-1891.
  • 29. Moss AJ, Hall WJ, Cannom DS, et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med 2009; 361: 1329-1338.
  • 30. Linde C, Abraham WT, Gold MR, et al. Randomized trial of cardiac resynchronization in mildly symptomatic heart failure patients and in asymptomatic patients with left ventricular dysfunction and previous heart failure symptoms. J Am Coll Cardiol 2008; 52: 1834-1843.
  • 31. Abraham WT, Young JB, León AR, et al. Effects of cardiac resynchronization on disease progression in patients with left ventricular systolic dysfunction, an indication for an implantable cardioverter-defibrillator, and mildly symptomatic chronic heart failure. Circulation 2004; 110: 2864-2868.
  • 32. Tang ASL, Wells G, Talajic M, et al. Cardiac-resynchronization therapy for mild-to-moderate heart failure. N Engl J Med 2010; 363: 2385-2395.
  • 33. Jones RH, Velazquez EJ, Michler RE, et al. Coronary bypass surgery with or without surgical ventricular reconstruction. N Engl J Med 2009; 360: 1705-1717.
  • 34. Masip J, Roque M, Sanchez B, et al. Noninvasive ventilation in acute cardiogenic pulmonary edema: systematic review and meta-analysis. JAMA 2005; 294: 3124-3130.
  • 35. Gray A, Goodacre S, Newby DE, et al. Noninvasive ventilation in acute cardiogenic pulmonary edema. N Engl J Med 2008; 359: 142-151.
  • 36. Cleland JG, Tendera M, Adamus J, et al. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J 2006; 27: 2338-2345.
  • 37. Massie BM, Carson PE, McMurray JJ, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med 2008; 359: 2456-2467.
  • 38. Roy D, Talajic M, Nattel S, et al. Rhythm control versus rate control for atrial fibrillation and heart failure. N Engl J Med 2008; 358: 2667-2677.
  • 39. Khan MN, Jaïs P, Cummings J, et al. Pulmonary-vein isolation for atrial fibrillation in patients with heart failure. N Engl J Med 2008; 359: 1778-1785.
  • 40. National Heart Foundation of Australia. Multidisciplinary care for people with chronic heart failure. Principles and recommendations for best practice. National Heart Foundation of Australia, 2010.
  • 41. Inglis SC, Clark RA, McAlister FA, et al. Structured telephone support or telemonitoring programmes for patients with chronic heart failure. Cochrane Database Syst Rev 2010; (8): CD007228.
  • 42. Chaudhry SI, Mattera JA, Curtis JP, et al. Telemonitoring in patients with heart failure. N Engl J Med 2010; 363: 2301-2309.


remove_circle_outline Delete Author
add_circle_outline Add Author

Do you have any competing interests to declare? *

I/we agree to assign copyright to the Medical Journal of Australia and agree to the Conditions of publication *
I/we agree to the Terms of use of the Medical Journal of Australia *
Email me when people comment on this article

Online responses are no longer available. Please refer to our instructions for authors page for more information.