Connect
MJA
MJA

The incidence and cost of adverse events in Victorian hospitals 2003–04

Jonathon P Ehsani, Terri Jackson and Stephen J Duckett
Med J Aust 2006; 184 (11): 551-555.

Summary

Objectives: To determine the incidence of adverse events in patients admitted in the year 2003–04 to selected Victorian hospitals; to identify the main hospital-acquired diagnoses; and to estimate the cost of these complications to the Victorian and Australian health system.

Design: The patient-level costing dataset for major Victorian public hospitals, 1 July 2003 – 30 June 2004, was analysed for adverse events by identifying C-prefixed diagnosis codes denoting complications, preventable or otherwise, arising during the course of hospital treatment. The in-hospital cost of adverse events was estimated using linear regression modelling, adjusting for age and comorbidity.

Main outcome measures: Cost of each patient admission (“admitted episode”), length of stay and mortality.

Results: During the designated timeframe, 979 834 admitted episodes were in the sample, of which 67 435 (6.88%) had at least one adverse event. Patients with adverse events stayed about 10 days longer and had over seven times the risk of in-hospital death than those without complications. After adjusting for age and comorbidity, the presence of an adverse event adds $6826 to the cost of each admitted episode. The total cost of adverse events in this dataset in 2003–04 was $460.311 million, representing 15.7% of the total expenditure on direct hospital costs, or an additional 18.6% of the total inpatient hospital budget.

Conclusion: Adverse events are associated with significant costs. Administrative datasets are a cost-effective source of information that can be used for a range of clinical governance activities to prevent adverse events.

  • Jonathon P Ehsani1,2
  • Terri Jackson2
  • Stephen J Duckett2

  • 1 Department of Human Services, Melbourne, VIC.
  • 2 School of Public Health, La Trobe University, Bundoora, VIC.


Acknowledgements: 

We would like to acknowledge the assistance of Peter McNair, Steve Gillett, Daniel Borovnicar and Jane Fewings from the Department of Human Services who provided ongoing support with the Victorian Costing Dataset, and Associate Professor Damien Jolley for his advice on approaches to data analysis.

Competing interests:

None identified.

  • 1. Issue paper for Bundaberg Hospital Commission of Inquiry. Safety and quality. July 2005. Available at: http://www.health.qld.gov.au/inquiry/submissions/safety_quality.pdf (accessed Dec 2005).
  • 2. Special Commission of Inquiry into Campbelltown and Camden Hospitals, final report. Sydney: New South Wales Department of Health, 2004.
  • 3. Douglas N, Robinson J, Fahey K. Inquiry into obstetric and gynaecological services at King Edward Memorial Hospital 1990-2000. Final report. Perth: Government of Western Australia, 2001.
  • 4. Van Der Weyden MB. The “Cam affair”: an isolated incident or destined to be repeated? [editorial] Med J Aust 2004; 180: 100-101. <MJA full text>
  • 5. Van Der Weyden MB. The Bundaberg Hospital scandal: the need for reform in Queensland and beyond [editorial]. Med J Aust 2005; 183: 284-285. <MJA full text>
  • 6. Faunce TA, Bolsin SNC. Three Australian whistleblowing sagas: lessons for internal and external regulation. Med J Aust 2004; 181: 44-47. <MJA full text>
  • 7. Rigby L, Clark RB, Runciman WB. Adverse events in health care: setting priorities based on economic evaluation. J Qual Clin Pract 1999; 19: 7-12.
  • 8. Wilson RM, Runciman WB, Gibberd RW, et al. The Quality in Australian Health Care Study. Med J Aust 1995; 163: 458-471. <eMJA pdf> <eMJA pdf>
  • 9. Barraclough B. Safety and quality in Australian healthcare: making progress [editorial]. Med J Aust 2001; 174: 616-617. <MJA full text>
  • 10. Zhan C, Miller MR. Excess length of stay, charges, and mortality attributable to medical injuries during hospitalization. JAMA 2003; 290: 1868-1874.
  • 11. National Centre for Classification in Health. The international statistical classification of diseases and related health problems. Tenth revision, Australian modification (ICD-10-AM). Sydney: NCCH, 2002.
  • 12. Australian Council for Safety and Quality in Health Care. List of terms and definitions for safety and quality. Available at: http://www.safetyandquality.org/index.cfm (accessed Feb 2006).
  • 13. Jackson T. Using computerised patient-level costing data for setting DRG weights: the Victorian (Australia) cost weight studies. Health Policy 2001; 56: 149-163.
  • 14. Jackson T. Cost estimates for hospital inpatient care in Australia: evaluation of alternative sources. Aust N Z J Public Health 2000; 24: 234-241.
  • 15. Sundararajan V, MacIsaac CM, Presneill JJ, et al. Epidemiology of sepsis in Victoria, Australia. Crit Care Med 2005; 33: 71-80.
  • 16. Sundararajan V, Henderson TM, Perry C, et al. New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality. J Clin Epidemiol 2004; 57: 1288-1294.
  • 17. MacIntyre CR, Ackland MJ, Chandraraj EJ. Accuracy of injury coding in Victorian hospital morbidity data. Aust N Z J Public Health 1997; 21: 779-783.
  • 18. Sundararajan V, Henderson TM, Ackland MJ, Marshall R. Linkage of the Victorian admitted episodes dataset. Symposium on health data linkage: its value for Australian health policy development and policy relevant research; 2002 Mar 20–21, Sydney. Adelaide: Public Health Information Development Unit, University of Adelaide, 2003.
  • 19. MacIntyre CR, Ackland MJ, Chandraraj EJ, et al. Accuracy of ICD-9-CM codes in hospital morbidity data, Victoria: implications for public health research. Aust N Z J Public Health 1997; 21: 477-482.
  • 20. Roughead EE, Gilbert AL, Primrose JG, et al. Coding drug-related admissions in medical records: is it adequate for monitoring the quality of medication use? Aust J Hosp Pharm 1998; 28: 7-12.
  • 21. Jackson T, Duckett S, Shepheard J, Baxter K. Measurement of adverse events using “incidence flagged” diagnosis codes. J Health Serv Res Policy 2006; 11: 21-26.
  • 22. Charlson ME, Pompei P, Ales KL, McKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987; 40: 373-383.
  • 23. Gabriel SE, Crowson CS, O’Fallon WM. A comparison of two comorbidity instruments in arthritis. J Clin Epidemiol 1999; 52: 1137-1142.
  • 24. Zhang JX, Iwashyna TJ, Christakis NA. The performance of different lookback periods and sources of information for Charlson comorbidity adjustment in Medicare claims. Med Care 1999; 37: 1128-1139.
  • 25. Neale G, Woloshynowych M. Retrospective case record review: a blunt instrument that needs sharpening [editorial]. Qual Saf Health Care 2003; 12: 2-3.
  • 26. Bates DW, Spell N, Cullen DJ, et al. The costs of adverse drug events in hospitalized patients. Adverse Drug Events Prevention Study Group. JAMA 1997; 277: 307-311.

Author

remove_circle_outline Delete Author
add_circle_outline Add Author

Comment
Do you have any competing interests to declare? *

I/we agree to assign copyright to the Medical Journal of Australia and agree to the Conditions of publication *
I/we agree to the Terms of use of the Medical Journal of Australia *
Email me when people comment on this article

Responses are now closed for this article.