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Use of artificial intelligence in skin cancer 
diagnosis and management
The challenge now is how to implement artificial intelligence technology safely into clinical 
practice

Artificial intelligence is a branch of computer 
science that, in broad terms, deals with either 
decision making or classification. The aim of 

artificial intelligence is to surpass human cognitive 
functioning such that automated decisions can be 
made. Machine learning — an application of artificial 
intelligence — is commonly used in image recognition. 
In general, the machine, or algorithm, learns from 
exposure to a large dataset. Once learning has taken 
place, the algorithm can be applied to unseen data. 
The potential advantages of this approach in health 
care are clear: machines can learn from very large 
datasets in relatively short time frames and can apply 
themselves to new data without fatigue or intra-
observer replication error.

Machine learning has recently demonstrated 
remarkable performance in image-based 
diagnosis across various medical fields, including 
ophthalmology, radiology, pathology and dermatology. 
In dermatology, the primary focus has been on 
developing machine learning systems that facilitate 
classification and decision support for skin cancer 
management. Skin cancer (including melanocytic 
and keratinocytic malignancy) is the most common 
cancer in Australia and among Caucasian populations 
worldwide. Melanoma is responsible for the majority 
of skin cancer deaths in Australia and has various 
presentations.1,2 While dermoscopy has improved 
the accuracy of melanoma diagnosis, significant 
variability occurs and is largely a function of clinical 
expertise. Recent studies show that machine learning 
algorithms have the potential to surpass the diagnostic 
performance of experts, and the challenge now is how 
to implement this new technology safely into clinical 
practice.

Although there are a number of machine learning 
algorithms that could be used in the dermatology 
setting, convolutional neural networks (CNNs) are 
the most promising. This is largely because they 
learn from data without any feature specification, 
and they are known to exhibit superior performance 
for image recognition in comparison with other 
machine learning algorithms.3 The aim of the CNN 
is to generalise its previously learned knowledge on 
unseen images beyond the training dataset. There 
are numerous parameters within a CNN that can be 
tweaked to maximise algorithm performance. Most 
of these parameters are adjusted automatically by the 
algorithm, without user input. Therefore, very little 
can be known, in principle, about why and how the 
algorithm reaches any particular decision. Currently, 
there are efforts underway to reduce the “black box” 
effect of CNNs. Some commercial software programs 
coupled to imaging devices will provide the user with 

comparable lesions to justify the algorithm’s output 
and improve transparency. However, this retrieval 
system may fail for rare or unseen cases and does not 
provide a decision-making process. While the black 
box phenomenon remains, there are two potentially 
negative implications for clinical practice: first, 
clinicians may have difficulty upskilling by following 
the algorithms’ outputs; and second, there exists the 
potential for deskilling and underperforming due 
to an over-reliance on technology.4,5 The effect of a 
faulty system has been explored by manipulating a 
previously trusted algorithm to generate incorrect 
classifications and found that doctors of all experience 
levels were susceptible to being misled by the 
recommendation.5

Algorithm performance is dependent on both the 
size and quality of the training image dataset and 
on whether the algorithm is used in situations for 
which it was intended. Depending on the training set, 
the device may be limited in its ability to diagnose 
specific lesions (eg, non-pigmented), or lesions in 
certain skin types (eg, darker skin) or sites (eg, scalp 
or acral). Retrospective image databases used to train 
algorithms may be associated with bias. In addition, 
artefacts (eg, hair, dermoscopic gel, air bubbles, 
rulers, pen markings, reflections) can distract from 
key features. However, if a CNN is trained on a large 
enough cohort, it can learn to deal with potential 
artefacts. Nonetheless, unbiased lesion selection and 
standardised image capture would invariably improve 
algorithm performance, and recent advances in three-
dimensional (3D) imaging modalities will enable this.6

Several studies have now shown that CNNs trained 
on retrospective image data collected at a single time 
point are capable of classifying skin cancer with 
sensitivities and specificities equal or superior to that 
of dermatologists (Box 1),5,7–9,11 and clinicians with 
less experience gain most from AI support under 
experimental conditions.5 Hypomelanotic and acral 
melanoma can be more challenging to diagnose 
clinically,1 and this could potentially present a 
challenge for automated classification. However, CNNs 
have achieved greater accuracy for hypopigmented 
and acral lesions in comparison with human experts, 
at least in silica.9,11 In addition to clinical images, CNNs 
have been applied to histopathological images of 
melanoma and benign naevi with promising results.10

The ground truth for lesion diagnosis

The gold standard for melanoma diagnosis is 
histopathological assessment. However, there exists 
significant inter- and intra-observer variability in 
histological diagnostic labels attributed to atypical 
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melanocytic lesions.12 The existence of such variability 
in diagnoses poses the dilemma of whether the 
CNN has learnt from the correct set of diagnoses. 
Consensus diagnoses, if practical, may help overcome 
this problem. Molecular biomarkers may assist in 
establishing a diagnosis13 and identifying high risk 
biology,14 but they require extensive validation before 
clinical use. Pathologists and clinicians also rely on 
metadata (age, personal and family history, lesion 
symptoms, recent change), which may influence 
diagnostic likelihoods. Importantly, it is possible to 
incorporate different data types, including metadata, 
sequential image data coupled with histopathology, to 
train future CNN algorithms and improve diagnostic 
discrimination of borderline lesions (Box 2).

Use of artificial intelligence for melanoma 
screening

It is well known that the incidence of invasive 
melanoma in Australia has increased over the past 40 
years. In addition, there has been a striking increase 
in incidence of in situ melanoma over the past decade, 
from 32 cases per 100 000 population in 2004 to 80 per 
100 000 population in 2019, with age-standardised 
mortality remaining fairly stable.2 The potential causes 
for the increase in incidence are complex, and involve 
a true increase, driven by poor sun exposure practices 
of individuals born before the SunSmart era, combined 
with increased awareness, excessive screening, and 
overdiagnosis. It has recently been estimated that 
54% of melanomas (15% of invasive melanomas) are 
overdiagnosed.15

Artificial intelligence-assisted targeted screening of 
high risk individuals is likely to be a more effective 
strategy to save lives than the current opportunistic 

approach. With sequential whole-body image datasets 
linked to metadata, molecular biomarkers and clinical 
outcomes, our ability to identify lesions associated 
with sinister biological potential will improve (Box 2), 
thereby reducing unnecessary biopsies, minimising 
overdiagnosis and other potential harms associated 
with screening.

Use of artificial intelligence in clinical practice

There are advantages and disadvantages of 
introducing artificial intelligence at different points 
in the patient care pathway.16 An artificial intelligence 
system used as a triaging tool before clinician 
assessment would enable automated risk stratification 
of individuals and/or lesions (Box 2). This approach 
could dramatically improve clinician workload and 
timely access to specialist care for people requiring 
urgent attention. Alternatively, artificial intelligence 
consulted following an examination by the clinician 
may act as a second opinion to improve diagnostic 
sensitivity and reduce unnecessary biopsies.5 The 
latter is more closely aligned with current clinical 
workflows and therefore likely to be preferred while 
the field matures. There is potential for over-reliance 
on artificial intelligence systems in both scenarios.

A secondary support system may provide the clinician 
with a diagnosis or a management decision. Doctors 
are more likely to change their minds if they are 
uncertain of a diagnosis and an algorithm provides 
a conflicting result.5 It is thus important to consider 
how an algorithm might convey uncertainty to avoid 
false guidance. For example, a decision-support output 
(eg, excise, monitor or reassure) avoids the diagnostic 
dilemma of differentiating between melanoma and 
dysplastic naevi. However, the problem is complex 

 2  Incorporation of different data types to train future convolutional neural network (CNN) algorithms and improve 
diagnostic discrimination of borderline lesions

AI = artificial intelligence. ◆
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and arguments exist as to why, in many situations, a 
diagnostic probability output might be more desirable.

Safe implementation of new technologies

The Therapeutic Goods Administration (TGA) has 
developed an action plan to improve the processes by 
which new devices are approved for use in Australia, 
strengthen monitoring and follow-up, and provide 
more information to consumers about the devices 
they use.17 International collaborations also exist with 
groups, such as the International Medical Device 
Regulators Forum, to establish better processes for 
medical device regulation globally. If software is 
classified as a medical device (ie, it is intended for 
diagnosis, prevention, monitoring, treatment or 
alleviation of disease), it must be registered on the 
Australian Register of Therapeutic Goods following 
TGA approval and before distribution within Australia.

Consumers and clinicians need to be aware of the 
intended use of an application or device. There are 
several smartphone applications available to the 
general public, with functionality ranging from 
education to monitoring and tracking to skin lesion 
classification. Some of these provide skin lesion risk 
assessment, although they may state that they are 
not intended to be used as a diagnostic device. There 
is concern that, if this is not immediately obvious 
to the consumer, unregistered applications may be 
used in lieu of seeking medical advice. Unsupervised 
consumer-operated diagnostic devices would require 
careful testing before they can be recommended.

Conclusion

As clinicians, we need to be aware of the limitations 
of any diagnostic tool and interpret outputs 
accordingly. Although the performance of artificial 
intelligence to date is promising, it remains to be 
seen how diagnostic devices in dermatology will 
influence decision making in the clinic and affect 
patient outcomes. Regardless of the specialty, any 
new technologies need to be rigorously tested 
before implementation and monitored after 
implementation. Ultimately, responsibility for 
patient care remains with the clinician and, as such, 
a high level of clinical acumen must be maintained. 
Nonetheless, artificial intelligence in dermatology 
is primed to become a powerful tool in skin cancer 
assessment.
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