

Tick-induced allergies: mammalian meat allergy and tick anaphylaxis

Sheryl A van Nunen^{1,2}

This Narrative Review includes individual journals not accessible via PubMed — due to their earlier date of publication — and a PubMed search for original and review articles published between 1940 and October 2017. In addition, specialist societies' publications and guidelines were examined to formulate an evidence-based review of the spectrum of tick-induced allergies, their discovery, distribution, clinical features, management and prevention, and mechanisms of development.

Spectrum of tick-induced allergies

Tick-induced allergies comprise large local reactions to tick bites, mammalian meat allergy after tick bites, and tick anaphylaxis.^{1,2} *Ixodes holocyclus* (the Australian paralysis tick) (Box 1) is responsible for the majority of bites in humans in Australia and is therefore the tick that causes most tick-induced allergies.³ The colloquial term "paralysis tick" is commonly used, but it mostly refers to effects on non-human mammals, such as dogs.

Large local allergic reactions to tick bites, while incapacitating at the time, are the least severe form of tick-induced allergies. The commonest presentation of a serious tick-induced allergy is mammalian meat allergy after a tick bite, which may manifest as anaphylaxis, recurrent angioedema or gut symptoms after ingestion of mammalian meat — all typically delayed by 3–6 hours.^{1,2,4–6} Mammalian meat allergy is an emergent allergy that has become increasingly prevalent in tick-endemic areas of Australia and the United States, and has been reported worldwide where *Ixodes* spp, *Amblyomma* spp and *Haemaphysalis longicornis* are endemic and known to bite humans (Box 2). The most severe manifestation of a tick-induced allergy is anaphylaxis to ticks, and it has resulted in four deaths in Australia.^{22,23} Tick anaphylaxis, which occurs most commonly in Australia,^{24–32} is becoming increasingly prevalent.^{1,3} Each of these reaction types relies on IgE mediation, but presents differently.

Large local reactions are restricted to the tick bite site, commence within 4–12 hours of the tick bite, reach their height by 72 hours, take 7–10 days to resolve, and are due to a late-phase allergic reaction primed by insect-specific IgE,³² as seen with many other insect bites and stings.³³

Mammalian meat allergy is due to an IgE-mediated reaction to a carbohydrate moiety, α -gal (galactose- α -1,3-galactose),⁶ which is present in all mammals (except humans, great apes and Old World monkeys)^{34–36} and is therefore in all mammalian meat (and mammalian products) eaten by humans. The delay of 3–6 hours in these allergic reactions is due not to arcane immunological influences, but rather to factors modulating the uptake of the allergen (α -gal) from the gut and its subsequent presentation to the host circulation.^{1,37}

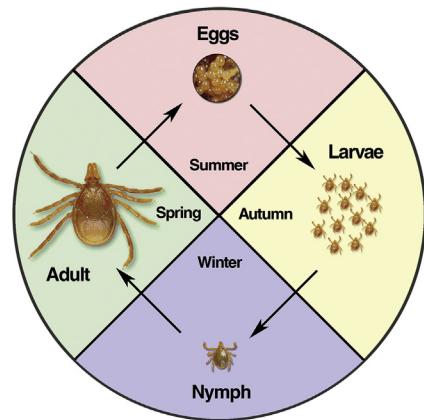
Tick anaphylaxis is a classic immediate IgE-mediated reaction directed against a protein (in this instance a tick salivary protein)

Summary

- Mammalian meat allergy after tick bites and tick anaphylaxis are the most serious tick-induced allergies. They are often severe, should be largely avoidable and offer fascinating insights into the development and prevention of allergies.
- Australian clinicians reported the first cases of tick anaphylaxis and discovered the association between tick bites and the development of mammalian meat allergy. The subsequent finding of the allergen epitope within the meat responsible for the allergic reaction, α -gal (galactose- α -1,3-galactose), stimulated further interest in this emergent allergy.
- Reports of mammalian meat allergy associated with bites from several tick species have now come from every continent where humans are bitten by ticks. The number of diagnosed patients has continued to rise.
- Clinically, mammalian meat allergy and tick anaphylaxis present quite differently. The prominent role of cofactors in triggering episodes of mammalian meat allergy can make its diagnosis difficult.
- Management of mammalian meat allergy is complicated by the manifold potential therapeutic implications due to the widespread distribution of the mammalian meat allergen, α -gal. Exposures to α -gal-containing medications have proved lethal in a minority of people, and fatal tick anaphylaxis has been reported in Australia. Prevention of tick bites is prudent and practicable; killing the tick *in situ* is crucial to both primary and secondary prevention of allergic reactions.
- Mechanisms in the development of mammalian meat allergy constitute a paradigm for how allergies might arise.

that is injected into the host by the tick when it is disturbed during feeding.^{32,38–42}

Discovery of the association between tick bite and mammalian meat allergy


In 2007, van Nunen and colleagues⁴ described the cases of 25 adults who developed red meat allergy after tick bites. This was a serendipitous finding, insofar as van Nunen was practising in a region of Australia where the condition occurs (along the Eastern seaboard) at a time when it was becoming more prevalent.

Making a direct link between having tick bites and the subsequent development of an allergy to a previously tolerated food (mammalian meat), however, also required a long familiarity with investigating anaphylaxis (leading to van Nunen skin-testing patients with all foods eaten at the meal before their anaphylaxis, even though their anaphylaxis had occurred an unprecedented 3–6 hours beforehand) and van Nunen's experience in using fresh food skin prick testing in anaphylaxis diagnosis ("prick-prick"; ie, prick the food and then prick the patient using fresh, raw, organic meats) before it became routine (the commercially available skin testing agents for beef, pork and lamb gave reactions small enough to be dismissed as

¹Royal North Shore Hospital, Sydney, NSW. ²Tick-Induced Allergies Research and Awareness Centre, Sydney, NSW. [✉ vannunen@med.usyd.edu.au](mailto:vannunen@med.usyd.edu.au) • doi: 10.5694/mja17.00591
• See Editorial, p. 296

Podcast with Sheryl van Nunen available at <https://www.mja.com.au/podcasts>

1 *Ixodes holocyclus* (Australian paralysis tick): stages and life cycle*

* Reproduced with permission from Stephen L Doggett; Department of Medical Entomology, NSW Health Pathology, Institute for Clinical Pathology and Medical Research, Westmead Hospital, Sydney, NSW. ♦

being clinically insignificant).^{5,6,37} Moreover, it necessitated an understanding of the nexus between IgE, parasites and allergy, and the consequent recognition of the potential for an immunological response to a parasite to skew the host's immune system to a T helper type 2 cells "pro-allergy" predominance.^{43,44}

Distribution of mammalian meat allergy after tick bite: a worldwide phenomenon

Since 2007, Commins and colleagues⁶ and Platts-Mills and colleagues³⁷ have determined the epitope (α -gal) within the meat against which the specific IgE antibody is directed. These researchers and many others around the world^{7-21,45-57} have also produced considerable data providing convincing evidence confirming the observation by van Nunen and colleagues^{4,5} of the development of mammalian meat allergy after tick bites.

Cases have now been reported from Australia,^{4,5,48,55} the United States,^{6,47} Europe (France,^{7,49-51} Spain,⁸ Germany,^{9,52,54} Switzerland,¹³ Sweden,^{12,53} the United Kingdom,¹⁵ Italy¹⁶ and Norway²¹), Asia (Korea¹⁰ and Japan^{11,18}), Central America (Panama¹⁴), South America (Brazil¹⁹) and Africa (South Africa¹⁷ and Ivory Coast²⁰) (Box 2); that is, on all continents where humans are bitten by ticks.

Estimates of mammalian meat allergy prevalence are currently 113/100 000 in the Sydney Basin, Australia, 13/100 000 in Virginia, US, and 4/100 000 in Baden-Württemberg, Germany.²⁸ The locations of reports of mammalian meat allergy after tick bite in Australia correlate with the distribution of *Ixodes holocyclus* (Box 3) — around 50% of Australians are potentially exposed to bites from this species.⁵⁸ In late 2016, a case of mammalian meat allergy was diagnosed in a man bitten by *Ixodes australiensis* in Western Australia, suggesting another tick species may be capable of inducing the condition in Australia. In other countries reporting cases of mammalian meat allergy, the association with exposure to ticks endemic to their regions has also been confirmed.^{7,9,10,12,14,28,45-48,50,56,57}

Clinical features of mammalian meat allergy and tick anaphylaxis

Both adults and children with mammalian meat allergy after tick bites have similar findings, ranging from angioedema or gut

2 Mammalian meat allergy: a worldwide phenomenon (initial reports)

Year	Country	Tick	n	Reference
2007	Australia	<i>Ixodes holocyclus</i>	25	4
2009	United States	<i>Amblyomma americanum</i>	24	6
2009	France	<i>Ixodes ricinus</i>	2	7
2011	Spain	<i>Ixodes ricinus</i>	5	8
2012	Germany	<i>Ixodes ricinus</i>	21	9
2012	Korea	<i>Ixodes nipponensis?</i>	1	10
2012	Japan	<i>Ixodes nipponensis?</i>	1	11
2013	Sweden	<i>Ixodes ricinus</i>	2	12
2014	Switzerland	<i>Ixodes ricinus</i>	3	13
2014	Panama	<i>Amblyomma cajennense</i>	4	14
2015	United Kingdom	<i>Ixodes ricinus</i>	1	15
2016	Italy	<i>Ixodes ricinus?</i>	1	16
2016	South Africa	?	2	17
2016	Japan	<i>Haemaphysalis longicornis?</i>	30	18
2016	Brazil	<i>Amblyomma sculptum?</i>	1	19
2016	Ivory Coast	<i>Amblyomma variegatum?</i>	1	20
2017	Norway	<i>Ixodes ricinus</i>	1	21

symptoms alone through to life-threatening anaphylaxis, with severe allergic reactions being more common (65.5%).^{28,47} The clinical features of mammalian meat allergy after tick bite are summarised below (Box 4).

Reactions to mammalian gelatine

Fewer than 10% of patients who are allergic to mammalian meat react to mammalian gelatine as well. Mullins and colleagues⁴⁸ established that parenteral administration of gelatine increased the likelihood of anaphylaxis, and observed that gelatine allergy may be the initial presentation of mammalian meat allergy. The authors documented clinical reactivity to both intravenous and oral gelatine, and reported a small number of patients with positive gelatine tests and negative mammalian meat tests who reacted to gelatine challenge.⁴⁸ Mullins and colleagues⁴⁸ confirmed that bites from *Ixodes holocyclus* (Australian Capital Territory and New South Wales' south coast), α -gal sensitisation and allergy to red meat are associated.⁴⁸

The role of amplifying factors (cofactors) in mammalian meat allergy

An understanding of the crucial role of cofactors in triggering a reaction in patients with mammalian meat allergy is important in ensuring their safety. As with all food allergens, to a greater or lesser degree, modulating factors all separately and collectively confer an increased risk of an α -gal-sensitised individual having an allergic reaction to mammalian meat at any particular time.^{28,50,59,60} These comprise ingesting a greater amount of allergen, co-ingestion of alcohol, exercise (particularly within 2 hours), the inclusion of spices (usually chilli and capsicum), the prior administration of non-steroidal anti-inflammatory agents, being otherwise unwell, being in the perimenstrual phase, and the effect of cooking (slow cooking or reheating of the meat dish).^{28,50,59,60} In addition, the

3 Distribution of *Ixodes holocyclus* (Australian paralysis tick)*

* Map adapted from Roberts FHS. Australian ticks. Yeerongpilly, QLD: CSIRO; 1970, by TAGS, Conroy B and Fischer N. ♦

concentration of α -gal varies between different mammalian meat products.⁵⁰ Offal (eg, pork kidney) has the highest α -gal concentration,⁵⁰ increasing the likelihood of a reaction. On the other hand, while cow's milk contains α -gal, boiling cow's milk abolishes α -gal reactivity,⁶¹ so pasteurised cow's milk is often tolerated. The effect of cofactors is so striking in mammalian meat allergy that European authors have drawn parallels with food-dependent exercise-induced anaphylaxis.^{28,50} Accounting for the role of cofactors is pivotal in mammalian meat challenge design²⁸ if reliable advice is to be forthcoming.

4 Clinical features of mammalian meat allergy after tick bites

Clinical features	References
• Patients with a history of tick bites present with allergic reactions after ingesting mammalian meat (or meat products) — reactions which are typically delayed (ie, "middle of the night" anaphylaxis) and often severe	5,8,10-14,28,47,49,53,57
• The interval between mammalian meat ingestion and the allergic reaction is 2–10 hours, usually 3–6 hours, depending on exposure to cofactors (eg, alcohol or exercise)	6,7,28,49-51,57
• Anaphylaxis occurs in up to 60% of patients, delayed urticaria or angioedema features and gut symptoms may occur alone	4-6,8,12,14-16,28,47,49,53
• There is a history of previous tick bite. Occasionally, evidence for the tick bite can be obscure	58
• A history of a large local reaction to a tick bite is not uncommon	4,5,57
• Bites from either nymphs or adult ticks may provoke the condition	
• Individuals with mammalian meat allergy will almost invariably have α -gal-specific IgE detectable in their serum, and/or positive skin tests to raw, organic mammalian meats and/or cetuximab	4-7,13

Pitfalls in the diagnosis of tick bite-induced mammalian meat allergy

The diagnosis of tick bite-induced mammalian meat allergy is beset by a number of pitfalls summarised below (Box 5). Notably, the prevalence of α -gal-specific IgE sensitisation does not necessarily equate to clinical reactivity, as is the case with almost all allergens. The prevalence of α -gal sensitisation throughout Europe (α -gal-specific IgE > 0.10 kU/L) is 5.5–8.1%.⁶² In the southeastern regions of the US, α -gal sensitisation prevalence is as high as 34–37% (Viracor-IBT Laboratory, 7300 serum samples⁶³). In Germany, of the 35.0% of forest workers and hunters who are sensitised to α -gal (α -gal-specific IgE > 0.10 kU/L), only 8.6% have had mammalian meat anaphylaxis.⁶⁴

Clinical features of tick anaphylaxis

In Australia, tick anaphylaxis has been reported since the 1940s,^{3,65-69} and since 1991, there have been documented cases in the US,^{24,25} France²⁶ and Spain.^{27-29,31,70} Worldwide, *Ixodes* spp. (*Ixodes holocyclus*,³ *Ixodes pacificus*,²⁴ *Ixodes ricinus*^{26,27}), *Rhipicephalus bursa*,^{29,31} *Rhipicephalus sangineus*³⁰ and *Hyalomma marginatum*³¹ are causative of tick anaphylaxis, the clinical features of which are listed in Box 6.

Management of tick-induced allergies

Tick anaphylaxis

At present, the management of tick anaphylaxis relies on tick bite prevention and killing the tick *in situ* and removing it, if necessary, under medical supervision to prevent allergic reactions if a subsequent tick bite occurs.^{3,71} The identification of tick proteins

5 Pitfalls in the diagnosis of tick bite-induced mammalian meat allergy

Characteristics	References
• Lack of awareness in doctor or patient of the existence of the condition (axiom: where certain tick species are endemic and humans are bitten, mammalian meat allergy will occur)	
• Interpreting the presence of α -gal-specific IgE (in the absence of a supportive clinical history) as indicating the patient has a clinical allergy to mammalian meat*	
• Mammalian meat allergy is an "any time" but not an "every time" allergy (ie, cofactors are very influential in its expression)	28,50,57
• Challenge design is difficult due to delayed reactions and the crucial role of cofactors	28,50,57

* The presence of allergen-specific IgE in serum or a positive skin test to any allergen does not equate to the patient having an allergy to that allergen, unless it can be established clinically that the allergen is causing the symptoms being experienced at this time in their life. α -Gal sensitisation may be present in the absence of clinical allergy to mammalian meats.²⁸ ♦

6 Clinical features of tick anaphylaxis

Tick anaphylaxis:	References
• is only seen with bites from adult ticks	1,2,3,39-42,45,68,69,71
• is becoming more commonly seen in tick-endemic areas in Australia	1,2,3,32,65-69
• is uncommon in countries other than Australia	24-31
• is usually severe (> 74% Mueller grade III or IV)	32,65-71
• may be fatal (four lethal reactions in Australia)	22,23
• may be provoked when the tick is disturbed or removed inappropriately	1,2,32,71
• is very unlikely to occur if the tick is killed in situ	71
• is more likely to occur in older individuals (> 50%, > 50 years of age)	71

likely responsible for anaphylaxis in patients,^{31,40-42,72,73} however, offers the prospect of diagnostics and immunotherapy for tick-induced allergies.

Mammalian meat allergy

Dietary education. Avoidance of mammalian meat and meat products is necessitated when mammalian meat allergy is severe. An expert dietitian is required to help with avoidance of meat products and maintenance of iron stores and to ensure vitamin B12 adequacy (www.tiara.org.au). In the minority of patients with mammalian meat allergy who are also clinically allergic to cow's milk or mammalian gelatine, the identification of hidden sources of cow's milk and gelatine is essential for their safety (www.allergy.org.au, www.allergyfacts.org.au).

Therapeutic precautions. α -Gal is widely distributed in therapeutic agents, and several novel therapeutic opportunities may prove risky in people who are α -gal sensitised (eg, wound healing and tumour therapy advances):⁷⁴

- cetuximab — due to its α -gal content, fatal reactions have occurred with its use;⁷⁵
- vaccination — α -gal is measurable in some vaccines (eg, measles—mumps—rubella and zoster), and other vaccines may contain mammalian products.⁷⁶ Use of these vaccines may expose patients with α -gal-specific IgE to the risk of an allergic reaction;⁷⁶
- gelatine — sources of gelatine may need flagging (eg, vaccines, capsules, tablets, suppositories and collagen-containing agents, including implants);⁴⁸
- porcine heart valve prostheses — α -gal sensitisation has likely played a role in serious allergic events after porcine cardiac valve xenograft transplantation;⁷⁷⁻⁷⁹ and
- antivenoms — snake,⁸⁰ redback and funnel web spider, box jellyfish and stonefish antivenoms plus scorpion and other antivenoms produced internationally (all made in mammals) may confer a risk of reaction.

Pharmaceutical and complementary medicine manufacturers, pharmacists and regulatory authorities need to be aware of therapeutic implications of mammalian meat allergy.

Prevention strategies in tick-induced allergies

Neither mammalian meat allergy nor tick anaphylaxis develops without a tick bite having occurred. Further tick bites recharge α -gal sensitisation levels and, in the absence of tick bites, the α -gal-specific IgE level reduces over time and some individuals lose their sensitivity to mammalian meat.⁸¹

Prevention of tick bites involves "dressing for the occasion" and ensuring your property is unfriendly to ticks (www.tiara.org.au). The available data, albeit limited, indicate that lifestyle changes targeting tick bite prevention may largely avert subsequent tick bites, and tick anaphylaxis may be prevented by using appropriate removal techniques.⁷¹ Killing the tick *in situ* is crucial to preventing allergic reactions,^{71,82} and is aimed at ensuring the tick does not regurgitate allergen into the host. The most practicable method of killing a tick on a human host is to use an ether-containing freezing agent.^{71,82} The dead tick ideally should be left to detach.⁸³ If tick removal is undertaken, then the greatest care should be taken to avoid compressing its salivary glands. Fine-tipped forceps should be used by health care experts with resuscitation facilities at hand.^{83,84} Using fine-tipped forceps requires excellent vision, but many patients with tick anaphylaxis report difficulty in visualising the tick. Moreover, household tweezers are tick squeezers and their use should be discouraged.⁷¹ Patients who have had a tick anaphylaxis previously should not disturb the tick, should summon paramedics and be taken to the nearest emergency department for tick killing and removal (www.allergy.org.au).

Overall, there are limited data regarding the relative efficacy of tick removal methods in preventing tick-induced allergies, chiefly because these are emergent allergies, but such studies are in progress.⁷¹

Mechanisms in the development of mammalian meat allergy

Mammalian meat allergy after tick bites is a paradigm for the development of an allergy: a process driven by genetic predisposition (eg, three out of four people in a single family will have the condition), environmental change (more ticks, more people, microclimate changes) and parasite-induced host immune changes, and possibly even an effect of the co-existence of an infectious agent in the tick (eg, rickettsiosis).

The emergence of mammalian meat allergy after a tick bite commenced 20–28 million years ago, when the fossil record shows the extinction of almost all hominoids after a catastrophic epidemiological event. Our surviving progenitors (and Old World monkeys and apes) had inactivated the enzyme that produces α -gal (α -galactosyltransferase), so humans and the higher primates then recognised α -gal as a foreign substance and could therefore elaborate anti-gal IgG antibodies, thus conferring protection against pathogenic α -gal-containing Old World organisms (enveloped viruses, protozoa and bacteria).⁷⁴

However, the fact that α -gal is a foreign substance to humans allows those so prone — after a tick bite, which likely promotes a “pro-allergy” T helper type 2 cell cytokine profile in the host⁸⁵ — to make a switch in production in B cells, making anti-gal antibodies from IgG manufacture to IgE production.^{40–42} This is facilitated by the galactosylation of the tick proteins, which enhances their immunogenicity. When the class switch to IgE production to the tick proteins is generated in the host, α -gal-specific IgE is also made.^{40–42} α -Gal is then a cross-reactive carbohydrate determinant, in that allergic reactions occur after mammalian meat is consumed because the host has become allergic to the α -gal injected by a tick and α -gal is present in non-primate mammal meats.

Previously documented instances of a cross-reactive carbohydrate determinant provoking anaphylaxis comprise those reported by Jyo and colleagues⁸⁶ in 1993 (galacto-oligosaccharides allergy in Japanese oyster farmers exposed to sea squirt body fluids) and Goh and colleagues⁸⁷ in 2001 (bird’s nest soup anaphylaxis in Singaporean children).

Araujo and colleagues⁸⁸ generated an α -galactosyltransferase knockout mouse model for the development of mammalian meat allergy, and Commins and Karim⁸⁹ have now shown anaphylaxis occurs when α -galactosyltransferase knockout mice sensitised to α -gal by intradermal injection of tick saliva are fed mammalian meat.

The final unique element is the delay seen with the majority of mammalian meat allergic reactions. The delay is likely due to the time taken to transport the α -gal from the gut to the circulation. α -Gal is present on both glycoproteins and glycolipids (including chylomicrons). Fat digestion takes several hours; α -gal-containing chylomicrons are absorbed by the enterocytes, transported in the lymphatics and then enter the circulation via the thoracic duct, triggering basophil mediator release⁶¹ when they reach the circulation.

Conclusion

Tick bite-induced allergies, mammalian meat allergy and tick anaphylaxis are often severe, should be largely avoidable and offer fascinating insights into allergy development and primary and secondary prevention of allergies in general. Avoidance of tick bites is key to preventing tick-induced allergies. If a tick bite does occur, then killing the tick in situ and avoiding any compression of the tick when it is removed significantly limit the possibility of tick-induced allergies occurring.

Competing interests: No relevant disclosures.

Provenance: Commissioned; externally peer reviewed. ■

© 2018 AMPCo Pty Ltd. Produced with Elsevier B.V. All rights reserved.

- 1 van Nunen S. Tick-induced allergies: mammalian meat allergy, tick anaphylaxis and their significance. *Asia Pac Allergy* 2015; 5: 3–16.
- 2 van Nunen S. Galactose-alpha-1,3-galactose, mammalian meat and anaphylaxis: a world-wide phenomenon? *Curr Treat Options Allergy* 2014; 1: 262–277.
- 3 Rappo TB, Cottee AM, Ratchford AM, Burns BJ. Tick bite anaphylaxis: incidence and management in an Australian emergency department. *Emerg Med Australas* 2013; 25: 297–301.
- 4 van Nunen S, O’Connor KS, Fernando SL, et al. The association between *Ixodes holocyclus* tick bite reactions and red meat allergy. *Intern Med J* 2007; 39: A132.
- 5 van Nunen SA, O’Connor KS, Clarke LR, et al. An association between tick bite reactions and red meat allergy in humans. *Med J Aust* 2009; 190: 510–511. <https://www.mja.com.au/journal/2009/190/9/association-between-tick-bite-reactions-and-red-meat-allergy-humans>
- 6 Commins SP, Satinover SM, Hosen J, et al. Delayed anaphylaxis, angioedema, or urticaria after consumption of red meat in patients with IgE antibodies specific for galactose-alpha-1,3-galactose. *J Allergy Clin Immunol* 2009; 123: 426–433.
- 7 Jacquet S, Moneret-Vautrin DA, Bihain BE. Mammalian meat-induced anaphylaxis: clinical relevance of anti-galactose-alpha-1,3-galactose IgE confirmed by means of skin tests to cetuximab. *J Allergy Clin Immunol* 2009; 124: 603–605.
- 8 Nuñez R, Carballada F, Gonzalez-Quintela A, et al. Delayed mammalian meat-induced anaphylaxis due to galactose- α -1,3-galactose in 5 European patients. *J Allergy Clin Immunol* 2011; 128: 1122–1124.e1.
- 9 Jappe U. Update on meat allergy. α -gal: a new epitope, a new entity? *Hautarzt* 2012; 63: 299–306.
- 10 Lee JH, Kim JH, Kim TH, Kim SC. Delayed mammalian meat-induced anaphylaxis confirmed by skin test to cetuximab. *J Dermatol* 2013; 40: 577–578.
- 11 Sekiya K, Fukutomi Y, Nakazawa T, et al. Delayed anaphylactic reaction to mammalian meat. *J Invest Allergol Clin Immunol* 2012; 22: 446–447.
- 12 Hamsten C, Tran TAT, Starkhammar M, et al. Red meat allergy in Sweden: association with tick sensitization and B-negative blood groups. *J Allergy Clin Immunol* 2013; 132: 1431–1434.
- 13 Michel S, Scherer K, Heijnen IA, Bircher AJ. Skin prick test and basophil reactivity to cetuximab in patients with IgE to alpha-gal and allergy to red meat. *Allergy* 2014; 69: 403–405.
- 14 Wickner PG, Commins S. The first central American cases of delayed meat allergy with galactose-alpha-1,3-galactose positivity clustered among field biologists in Panama. Abstract 736; American Academy of Allergy, Asthma and Immunology Annual Meeting; San Diego, CA (US); 28 Feb – 4 Mar 2014.
- 15 Shepherd M. Anaphylaxis shock warning over Highland tick bites. Edinburgh: Royal Environmental Health Institute of Scotland; 2015. https://www.rehis.com/sites/default/files/rehis_september_2015_e-newsletter_12_0915_1.pdf (viewed Feb 2018).
- 16 Calamari AM, Poppa M, Villalta D, Pravettoni V. Alpha-gal anaphylaxis: the first case report from Italy. *Eur Ann Allergy Clin Immunol* 2015; 47: 161–162.
- 17 Gray CL, van Zyl A, Strauss L. “Midnight anaphylaxis” to red meat in patients with alpha-gal sensitisation: a recent discovery in the food allergy world and a case report from South Africa. *Curr Allergy Clin Immunol* 2016; 29: 102–104.
- 18 Chinuki Y, Ishiwata K, Yamaji K, et al. *Haemaphysalis longicornis* tick bites are a possible cause of red meat allergy in Japan. *Allergy* 2016; 71: 421–425.
- 19 Cocco RR, Ensina LF, Aranda CS, Solé D. Galactose- α -1,3-galactose (alpha gal) allergy without anaphylaxis: a case report in Brazil. *Clin Transl Allergy* 2017; 7: 7.
- 20 Kaloga M, Kouroura S, Kouassi YI, et al. Allergy to red meat: a diagnosis made by the patient and confirmed by an assay for IgE antibodies specific for alpha-1,3-galactose. *Case Rep Dermatol* 2016; 8: 10–13.
- 21 Lied GA. Red meat allergy induced by tick bite: a Norwegian case report. *Eur Ann Allergy Clin Immunol* 2017; 49: 186–188.
- 22 McGain F, Welton R, Solley GO, Winkel KD. First fatalities in tick anaphylaxis. *J Allergy Clin Immunol Pract* 2016; 4: 769–770.
- 23 Mullins RJ, Wainstein BK, Barnes EH, et al. Increases in anaphylaxis fatalities in Australia from 1997 to 2013. *Clin Exp Allergy* 2016; 46: 1099–1110.
- 24 van Wye JE, Hsu YP, Lane RS, et al. IgE antibodies in tick bite-induced anaphylaxis. *J Allergy Clin Immunol* 1991; 88: 968–970.
- 25 van Wye JE, Hsu YP, Terr AI, Moss RB. Anaphylaxis from a tick bite. *N Engl J Med* 1991; 324: 777–778.
- 26 Moneret-Vautrin DA, Beaudouin E, Kanny G, et al. Anaphylactic shock caused by ticks (*Ixodes ricinus*). *J Allergy Clin Immunol* 1998; 101: 144–145.
- 27 Fernández-Soto P, Dávila I, Laffond E, et al. Tick-bite-induced anaphylaxis in Spain. *Ann Trop Med Parasitol* 2001; 95: 97–103.
- 28 Fischer J, Yazdi AS, Biedermann T. Clinical spectrum of α -gal syndrome: from immediate-type to delayed immediate-type to mammalian innards and meat. *Allergo J Int* 2016; 25: 55–62.

29 Acer S, Blanco R, Bartolomé B. Anaphylaxis due to a tick bite. *Allergy* 2003; 58: 824-825.

30 Valls A, Pineda F, Belver M, et al. Anaphylactic shock caused by tick (*Rhipicephalus sanguineous*). *J Investig Allergol Clin Immunol* 2007; 17: 279-280.

31 Mateos-Hernández L, Villar M, Moral A, et al. Tick-host conflict: immunoglobulin E antibodies to tick proteins in patients with anaphylaxis to tick bite. *Oncotarget* 2017; 8: 20630-20644.

32 Gauci M, Loh RKS, Stone BF, Thong YH. Allergic reactions to the Australian paralysis tick, *Ixodes holocyclus*: diagnostic evaluation by skin test and radioimmunoassay. *Clin Exp Allergy* 1989; 19: 279-283.

33 Graft DF, Schubert KC, Kagey-Sobotka A, et al. A prospective study of the natural history of large local reactions after Hymenoptera stings in children. *J Pediatr* 1984; 104: 664-668.

34 Galili U, Clark MR, Shohet SB, et al. Evolutionary relationship between the natural anti-gal antibody and the gal-alpha-1,3-gal epitope in primates. *Proc Natl Acad Sci U S A* 1987; 84: 1369-1373.

35 Galili U, Mandrell RE, Hamadeh RM, et al. Interaction between human natural anti-alpha-galactosyl immunoglobulin G and bacteria of the human flora. *Infect Immun* 1988; 56: 1730-1737.

36 Galili U. Evolution and pathophysiology of the human natural anti-alpha-galactosyl IgG (anti-gal) antibody. *Springer Semin Immunopathol* 2004; 15: 155-171.

37 Commins S, Lucas S, Hosen J, et al. Anaphylaxis and IgE antibodies to galactose-alpha-1,3-galactose (alphaGal): insight from the identification of novel IgE ab to carbohydrates on mammalian proteins. *J Allergy Clin Immunol* 2008; 121: S25.

38 Gauci M, Stone BF, Thong YH. Detection in allergic individuals of IgE specific for the Australian paralysis tick, *Ixodes holocyclus*. *Int Arch Appl Immunol* 1988; 85: 190-193.

39 Gauci M, Stone BF, Thong YH. Isolation and immunological characterisation of allergens from salivary glands of the Australian paralysis tick, *Ixodes holocyclus*. *Int Arch Appl Allergy Immunol* 1988; 87: 208-212.

40 Broady KW. Presentation of findings: tick allergens; TIARA (Tick-induced Allergies Research and Awareness) Committee Meeting. Royal North Shore Hospital; Sydney (Australia), 20 Aug 2013.

41 Dorey C. Allergens of the Australian paralysis tick, *Ixodes holocyclus* [dissertation]. Sydney: University of Technology Sydney, 1998.

42 Padula MP. The development of proteomic techniques to study the Australian paralysis tick [dissertation]. Sydney: University of Technology Sydney, 2008.

43 Cooper PJ. Interactions between helminth parasites and allergy. *Curr Opin Allergy Clin Immunol* 2009; 9: 29-37.

44 Tyagi N, Farnell EJ, Fitzsimmons CM, et al. Comparisons of allergenic and metazoan parasite proteins: allergy the price of immunity. *PLoS Comput Biol* 2015; 11: e1004546.

45 Commins SP, Platts-Mills TA. Tick bites and red meat allergy. *Curr Opin Allergy Clin Immunol* 2013; 13: 354-359.

46 James HR, Commins SP, Kelly LA, et al. Further evidence for tick bites as a cause of the IgE responses to alpha-gal that underlie a major increase in delayed anaphylaxis to meat. *J Allergy Clin Immunol* 2011; 127: AB243.

47 Kennedy JL, Stallings AP, Platts-Mills TA, et al. Galactose-alpha-1,3-galactose and delayed anaphylaxis, angioedema and urticaria in children. *Pediatrics* 2013; 131: e1545-e1552.

48 Mullins RJ, James H, Platts-Mills TA, Commins S. Relationship between red meat allergy and sensitization to gelatin and galactose-alpha-1,3-galactose. *J Allergy Clin Immunol* 2012; 129: 1334-1342.e1.

49 Renaudin J, Jacquetin S, Metz-Favre C, et al. Interest of specific IgE measurement for galactose-alpha-1,3-galactose in unexplained urticaria and angioedema, predominantly nocturnal: about 6 cases. *J Allergy Clin Immunol* 2012; 129: AB177.

50 Morisset M, Richard C, Astier C, et al. Anaphylaxis to pork kidney is related to IgE antibodies specific for galactose-alpha-1,3-galactose. *Allergy* 2012; 67: 699-704.

51 Morisset M, Richard C, Zanna H, et al. Allergy to cow's milk related to IgE antibodies specific for galactose-alpha-1,3-galactose. Abstract 1617. European Academy of Allergy and Clinical Immunology Congress and World Allergy Organization; Milan (Italy); 22-26 June 2013.

52 Caponetto P, Fischer J, Biedermann T. Gelatin-containing sweets can elicit anaphylaxis in a patient with sensitization to galactose-alpha-1,3-galactose. *J Allergy Clin Immunol Pract* 2013; 1: 302-303.

53 Hamsten C, Starkhammar M, Tran TA, et al. Identification of galactose-alpha-1,3-galactose in the gastrointestinal tract of the tick *Ixodes ricinus*: possible relationship with red meat allergy. *Allergy* 2013; 68: 549-552.

54 Jappe U, Platts-Mills T, Przybilla B, et al. IgE-reactivity to galactose-[alpha]-1,3-galactose: a prospective multicentre study on meat allergy, urticaria and anaphylaxis [abstract #202]. Proceedings for the Thirty-first European Academy of Allergy and Clinical Immunology Congress; Geneva, Switzerland; 2012 June 16-20.

55 Baumgart KW, Mok A, Sivertsen T, et al. Allergen-specific IgE after anaphylaxis to tick or mammalian/marsupial meat in Australia. European Academy of Allergy and Clinical Immunology Congress; Copenhagen (Denmark); 7-11 June 2014. *Allergy* 2014; 69: 1-646.

56 Platts-Mills TA, Commins SP. Emerging antigens involved in allergic responses. *Curr Opin Immunol* 2013; 25: 769-774.

57 Fischer J, Yazdi A, Biedermann T. Mammalian meat allergy: a diagnostic challenge. *Allergo J Int* 2015; 24: 81-83.

58 van Nunen SA, Said MG, Batty G. Use of expanded search criteria in diagnosing mammalian meat allergy provoked by previous tick bites in individuals who do not live where ticks are endemic. Abstract 2602. European Academy of Allergy and Clinical Immunology Congress and World Allergy Organization; Milan (Italy); 22-26 June 2013.

59 Wölbörg F, Fischer J, Köberle M, et al. About the role and underlying mechanisms of cofactors in anaphylaxis. *Allergy* 2013; 68: 1085-1092.

60 Versluis A, van Os-Medendorp H, Kruizinga A, et al. Cofactors in allergic reactions to food: physical exercise and alcohol are the most important. *Immun Inflamm Dis* 2016; 4: 392-400.

61 Commins SP, James HR, Stevens W, et al. Delayed clinical and ex vivo response to mammalian meat in patients with IgE to galactose-alpha-1,3-galactose. *J Allergy Clin Immunol* 2014; 134: 108-115.

62 Gonzalez-Quintela A, Dam Laursen AS, Vidal C, et al. IgE antibodies to alpha-gal in the general population: relationship to tick bites, atopy, and cat ownership. *Clin Exp Allergy* 2014; 44: 1061-1068.

63 Olafson PU. Ticks and the mammalian meat allergy. *Beef Research* 2014; 4: 1-3.

64 Fischer J, Lupberger E, Hebsaker J, et al. Prevalence of type I sensitization to alpha-gal in forest service employees and hunters. *Allergy* 2017; 72: 1540-1547.

65 McKay WJS. Tick bite and allergy. *Med J Aust* 1940; 1: 458-459.

66 Trinca JC. Insect allergy in Australia. Results of a five-year survey. *Med J Aust* 1964; 2: 659-663.

67 Banfield JF. Tick bites in man. *Med J Aust* 1966; 2: 600-601.

68 Kemp A. Tick bites. *Med J Aust* 1986; 144: 615.

69 Brown AF, Hamilton DL. Tick bite anaphylaxis in Australia. *J Accid Emerg Med* 1998; 15: 111-113.

70 Sánchez M, Venturini M, Blasco A, et al. Tick bite anaphylaxis in a patient allergic to bee venom. *J Investig Allergol Clin Immunol* 2014; 24: 284-285.

71 van Nunen S, Basten A, Cowdery N, et al. Tick removal techniques practised by tick anaphylaxis sufferers. *Intern Med J* 2014; 44: 1-37.

72 Gauci M, Stone BF, Thong YH. Detection in allergic individuals of IgE specific for the Australian paralysis tick, *Ixodes holocyclus*. *Int Arch Allergy Appl Immunol* 1988; 85: 190-193.

73 Gauci M, Stone BF, Thong YH. Isolation and immunological characterisation of allergens from salivary glands of the Australian paralysis tick *Ixodes holocyclus*. *Int Arch Allergy Appl Immunol* 1988; 87: 208-212.

74 Galili U. Anti-gal: an abundant human natural antibody of multiple pathogeneses and clinical benefits. *Immunology* 2013; 140: 1-11.

75 Pointreau Y, Commins SP, Calais G, et al. Fatal infusion reactions to cetuximab: role of immunoglobulin E-mediated anaphylaxis. *J Clin Oncol* 2012; 30: 334; author reply 335.

76 Stone CA, Hemler JA, Commins SP, et al. Anaphylaxis after zoster vaccine: implicating alpha-gal allergy as a possible mechanism. *J Allergy Clin Immunol* 2017; 139: 1710-1713.e2.

77 Naso F, Gandaglia A, Bottio T, et al. First quantification of alpha-gal epitope in current glutaraldehyde-fixed heart valve bioprostheses. *Xenotransplantation* 2013; 20: 252-261.

78 Fournier PE, Thuny F, Grisoli D, et al. A deadly aversion to pork. *Lancet* 2011; 377: 1542.

79 Mozzicato SM, Tripathi A, Posthumus JB, et al. Porcine or bovine valve replacement in 3 patients with IgE antibodies to the mammalian oligosaccharide galactose-alpha-1,3-galactose. *J Allergy Clin Immunol Pract* 2014; 2: 637-638.

80 Fischer J, Eberlein B, Hilger C, et al. Alpha-gal is a possible target of IgE-mediated reactivity to antivenom. *Allergy* 2017; 72: 764-771.

81 Commins SP, Jerath MR, Cox K, et al. Delayed anaphylaxis to alpha-gal, an oligosaccharide in mammalian meat. *Allergol Int* 2016; 65: 16-20.

82 Australasian Society of Clinical Immunology and Allergy. Tick allergy [website]. Sydney: ASCIA; 2016. <https://www.allergy.org.au/patients/insect-allergy-bites-and-stings/tick-allergy> (viewed Nov 2017).

83 Stone BF. Dealing with ticks affecting humans in Australia, especially the Australian paralysis tick *Ixodes holocyclus*. St Lucia (Australia): Department of Microbiology and Parasitology, School of Molecular and Microbial Sciences, University of Queensland; 2000.

84 Due C, Fox W, Medlock JM, et al. Tick bite prevention and tick removal. *BMJ* 2013; 347: f7123.

85 Ferreira BR, Silva JS. Successive tick infestations selectively promote a T-helper 2 cytokine profile in mice. *Immunology* 1999; 96: 434-439.

86 Jyo T, Kuwabara M, Kodomari Y, et al. Cases of immediate-type allergy in oyster shuckers due to galacto-oligosaccharide. *J Hiroshima Med Assoc* 1993; 25: 19-26.

87 Goh DL, Chua KY, Chew FT, et al. Immunochemical characterization of edible bird's nest allergens. *J Allergy Clin Immunol* 2001; 107: 1082-1087.

88 Araujo RN, Franco PF, Rodrigues H, et al. *Amblyomma sculptum* tick saliva: alpha-gal identification, antibody response and possible association with red meat allergy in Brazil. *Int J Parasitol* 2016; 46: 213-220.

89 Commins SP, Karim S. Development of a novel murine model of alpha-gal meat allergy. *J Allergy Clin Immunol* 2017; 139: AB193. ■