Should Aboriginals in the “Top End” of the Northern Territory be vaccinated against hepatitis A?

Francis J Bowden, Bart J Currie, Nan C Miller, Stephen A Locarnini and Vicki L Krause

Objective: To determine the level of immunity to hepatitis A virus infection in rural Australian Aboriginal populations in the “Top End” of the Northern Territory.

Methods: A total of 344 sera, for which details of donors’ age, sex and domicile were available, were collected and tested for hepatitis A total antibody in a delinked seroprevalence study.

Results: Overall, 337/344 samples (97.97%) tested positive for hepatitis A total antibodies — 182/20 samples (90%) in the 1–5 year age group; 85/88 (96.6%) in the 6–10 year age group; 98/98 (100%) in the 11–15 year age group; 32/33 (97.0%) in the 16–20 year age group and 104/105 (99%) in the older than 20 year age group.

Conclusion: Hepatitis A is hyperendemic in the rural Aboriginal communities studied and the virus is acquired predominantly in the first five years of life. Symptomatic hepatitis A infection is uncommon in this population. We suggest that hepatitis A vaccination for rural Aboriginal children is not indicated as it would not reduce clinical disease rates and may produce a cohort whose immunity could decrease over the following 10 years. Although vaccination is appropriate for non-immune individuals working in remote communities, emphasis must be placed on the inequities in health infrastructure and education underlying the high transmission rates in Aboriginal children.

Disease Control, Northern Territory Department of Health and Community Services, GPO Box 40596, Darwin, NT 0811.
Francis J Bowden, FRACP: Head, AIDS/STD Unit.
Nan C Miller, BSN, MPH, MPH, Senior Research Officer.
Vicki L Krause, FAFPHM, DTM&H, Director.
Royal Darwin Hospital, Darwin, NT.
Bart J Currie, FRACP, FAFPHM, DTM&H, Infectious Diseases Physician. Also Head, Clinical Unit, Menzies School of Health Research, Darwin.
Victorian Infectious Diseases Reference Laboratory, Fairfield Hospital, Fairfield, VIC.
Stephen A Locarnini, PhD, MRCPath, Director.
No reprints will be available. Correspondence: Dr F J Bowden.
Positivity for HAV specific antibody by age group

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>No. tested</th>
<th>No. (%) HAV IgG positive</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>20</td>
<td>18 (90.00%)</td>
<td>68.29-98.77</td>
</tr>
<tr>
<td>6-10</td>
<td>88</td>
<td>85 (96.60%)</td>
<td>90.37-99.29</td>
</tr>
<tr>
<td>11-15</td>
<td>98</td>
<td>98 (100%)</td>
<td>96.31-100.00</td>
</tr>
<tr>
<td>16-20</td>
<td>33</td>
<td>32 (96.87%)</td>
<td>84.23-99.92</td>
</tr>
<tr>
<td>>20</td>
<td>105</td>
<td>104 (99.05%)</td>
<td>94.82-99.98</td>
</tr>
<tr>
<td>Total</td>
<td>344</td>
<td>337 (97.97%)</td>
<td>95.85-99.18</td>
</tr>
</tbody>
</table>

HAV = hepatitis A virus; CI = confidence interval.

Several recent HAV serosurveys have shown that the prevalence of immunity in places previously considered to be high prevalence areas (including South-East Asia) has fallen progressively in the last 10 years.\(^5\)\(^-\)\(^12\) In developed countries HAV total antibodies are present in less than 20% of those aged under 20 years who were born in those countries.\(^10\)\(^,\)\(^13\)\(^,\)\(^14\) Non-immune individuals place themselves at substantial risk of infection when they visit endemic areas or are involved in high risk activity, such as faecal–oral contact during sex. A transitional situation of moderate transmission exists in some regions where standards of sanitation and hygiene have improved, a situation reported to be the case in some urban Aboriginal communities.\(^15\)

Reasons for the hyperendemicity of HAV in the communities we studied include overcrowding, poor sanitation, inadequate water supply and poor understanding of personal hygiene. The high birth rate in these communities maintains a supply of susceptible individuals. The prevalence of enteric diseases such as shigellosis and salmonellosis is also alarmingly high\(^1\) and associated with overcrowding.\(^16\)

The newly released HAV vaccine (Havrix, SmithKline Beecham, Dandong, Vic,\(\text{c}\)) is highly immunogenic and protects against HAV,\(^17\) but the duration of immunity is unknown and boosters may be required to maintain protective immunity. It has been argued that the vaccine should be incorporated into the routine childhood vaccination schedule with the aim of eradicating HAV,\(^18\) a policy already adopted in the NT for hepatitis B virus (HBV). However, there are important differences between the epidemiology and natural history of HAV and HBV, especially in the NT Aboriginal population, and a different approach for HAV is indicated.

Sensible policies for targeting those at highest risk of disease are essential because the vaccine is costly and widespread vaccination could be counter-productive if protection wanes and disease transmission continues at high rates. Only 1.5% of rural Aboriginal people over 10 years of age were susceptible to HAV (our data). To our knowledge, this reflects the highest rate of seropositivity for HAV reported. Thus, vaccination of Aboriginals from the Top End would lead to little, if any, decrease in clinical disease in that population and would produce a cohort whose immunity might decrease over the following 10 years. This susceptible group within an endemic area may then, as older children or adults, manifest icteric disease with all its morbidity.

HAV vaccine should be offered in the NT to the susceptible group (non-Aboriginals less than 50 years of age) and persons at high risk (those working with children in hospitals, remote communities or transitional urban settings). At present the cost of the vaccine probably justifies prevaccination testing for antibodies in groups with some immunity, but studies to ascertain immunity levels in these groups are required.

We do not believe that it is appropriate to vaccinate NT rural Aboriginal populations given the almost universal natural immunity by 10 years of age and the persisting disadvantageous conditions of living, which dictate the high levels of transmission early in life. This policy will need to be reviewed with the changing social circumstances of Australian Aboriginal people and future seroprevalence studies will be required.

Liking conditions in the communities studied are typical of many other remote communities in the Northern Territory, northern Queensland and Western Australia. Probably, similar seroprevalence rates exist elsewhere, but local vaccination policy will depend upon regional epidemiology. Meanwhile the benefits of HAV vaccination for affluent communities should not distract from efforts to address the enormous inequities in health infrastructure and education underlying our findings.

Acknowledgements

This study was a joint investigation by Disease Control, Northern Territory Department of Health and Community Care, and the Menzies School of Health Research in Darwin in collaboration with Theodora Etafis, Suellen Nicholson and Dr Alen Breschkin from the Victorian Infectious Disease Reference Laboratory. The authors also gratefully acknowledge the assistance of Dr John Hargrave, Dae Shernock, Jo Bex and Yvonne Wood.

References

(Received 11 Apr; accepted 5 Jul 1994)