Using hospital standardised mortality ratios to assess quality of care — proceed with extreme caution
Ian A Scott, Caroline A Brand, Grant E Phelps, Anna L Barker and Peter A Cameron

There is growing interest in assessing Australian hospital performance using routinely collected administrative data. The hospital standardised mortality ratio (HSMR) has emerged as a potentially universal system-level indicator for comparing mortality between hospitals within and across different jurisdictions (Box). It is presently reported in the United Kingdom, Sweden, Netherlands, Canada, United States and Australia, and is being used to gauge success of several large-scale safety campaigns in both the US and Canada. In November 2009, the Australian Health Ministers endorsed the approach recommended by the Australian Commission on Safety and Quality in Health Care for the implementation and reporting of a core set of national indicators of safety and quality that included the HSMR. Working groups are now studying its implementation. Researchers from Flinders University in Adelaide have recently argued the case for using the HSMR as a screening tool for safety and quality in Australian hospitals. In Canada, there is already public reporting of HSMRs for individual hospitals. In Australia, there is similar political commitment to public reporting of comparative hospital quality and safety performance, with a national reform agenda and the My Hospitals website (http://www.myhospitals.gov.au).

In this article, we argue that the methodology underpinning the all-admission, hospital-wide HSMR is not sufficiently robust for its use as an external, publicly available, cross-sectional screening tool in identifying hospitals associated with above-average mortality, which is then attributed (rightly or wrongly) to lower quality care. Instead, diagnosis-specific HSMRs may serve as more useful tools for monitoring changes in mortality of high-volume, high-risk conditions over time within single institutions as a marker of broad secular trends in care improvement and effects of local quality improvement initiatives.

Problems with using HSMR as a screening tool for detecting poor-quality hospitals

Low signal-to-noise ratio
Death occurs in 5%–10% of all hospitalised patients. Most of these deaths (between 95% and 98%) reflect the natural history of disease, not poor-quality care. Conversely, most quality problems, while associated with injury and prolonged hospital stays, do not cause death. Consequently, the HSMR, as a screening instrument for quality, is limited by low sensitivity (most quality problems do not cause death) and low specificity (most deaths do not reflect poor-quality care). Past simulation studies using mortality data from 190 US hospitals reveal that almost two-thirds of poor-quality hospitals (in which 25% of deaths were classified as preventable) demonstrated no significant increase in HSMR. A further limitation is that, in the absence of data linkage systems, the HSMR will not encompass deaths that occur after discharge or interhospital transfer, some of which may reflect poor-quality inpatient care.

Low criterion validity
The available evidence indicates a weak and inconsistent association between HSMR and other measures of quality of care when performed as between-hospital comparisons. In one review of 378 patients who died from stroke, myocardial infarction or pneumonia in 11 outlier hospitals with substantially higher HSMRs, no differences were seen, compared with hospitals with lower HSMRs, in adherence rates for 31 recommended processes of care. Even differences in risk-adjusted mortality rates for three high-risk clinical conditions — acute myocardial infarction, heart failure and pneumonia — correlated very poorly with variations in 10 condition-specific process measures of quality reported across 3657 US acute-care hospitals. A recent systematic review of 31 studies concluded that risk-adjusted mortality is a poor predictor of preventable complications and quality problems among hospitals.

Adequacy of risk adjustment
In rendering the HSMR more able to distinguish low-quality from high-quality hospitals, much attention is given to optimising statistical models that adjust for differences between hospitals in patient characteristics that increase the risk of death, but which are independent of the quality of care. While risk-adjustment models based on administrative data appear to be equivalent to those...
patients who die in emergency departments shortly after presentation vary across hospitals, with some institutions coding the reference populations used to generate risk-adjustment models inconsistently recorded in hospital statistics, 20 as is overall function — such as obesity, dementia and heart failure — are individual hospitals. Certain comorbidities relevant to risk adjustment may not sufficiently adjust for differences in casemix between hospitals with higher than expected hospital-wide mortality as substantially different mortality rates. In 2006, 12 out of 28 hospitals with higher than expected hospital-wide mortality as classified by one method had lower than expected mortality when classified by one or more of the other methods. Explanations included disparate statistical methods, differences between hospitals in eligibility and exclusion criteria regarding admissions, and flaws in the hypothesised association between HSMR and quality of care. 23

Different reference populations
Choosing which diagnoses or patient groups should be included in the reference populations used to generate risk-adjustment models is particularly problematic. Admission practices for unplanned presentations vary across hospitals, with some institutions coding patients who die in emergency departments shortly after presenta-

HSMR = (No. of deaths among diagnoses included in sample ÷ Expected no. of deaths among diagnoses included in sample) × 100.

HSMR > 100 indicates that a hospital’s observed mortality rate equals that expected on the basis of its casemix.

HSMR < 100 indicates a lower than expected mortality. The underlying assumption is that excess deaths include potentially avoidable deaths resulting from poor-quality care.

In most cases, calculating the ratio involves assigning a probability of dying to each patient included in the dataset who has received a diagnosis or undergone a procedure that is one of about 65 conditions and procedures that account for 80% of all hospital deaths.

Small sample size and imprecision
The HSMR becomes more imprecise for small hospitals with fewer deaths as a function of fewer admissions. The resultant wide confidence intervals preclude detection of statistically significant outliers that warrant more detailed investigation. Statistical techniques such as regression to mean, shrinkage estimators and enlarged sample sizes (using multiyear data) 26 can be used to improve precision. However, their application requires further validation, and those dependent on data gathered over several years in the past are less relevant to current practice.

Uncertain stability over time
At the hospital level, HSMRs should be relatively stable over time, and immune to seasonal and annual fluctuations. Although some studies confirm this, 6, 27 others show substantial short-term changes in HSMR beyond those reasonably attributable to clinical advances or quality-of-care improvements. 2, 12

Potential to mislead
In the absence of wide awareness of its limitations and careful clinical interpretation, the hospital-wide HSMR can mislead. Unfavourable HSMRs based on incorrect data or analyses can trigger external inquiries that stigmatise individual hospitals, lower morale and public confidence, and encourage “gaming” of data — eg, by upgrading risk assessments 28 — or the pursuit of inappropriately aggressive care. 29 The HSMR also overlooks factors that may account for seemingly better performance, such as greater access to step-down facilities, hospice or residential care, or community health services that reduce length of stay and risk of inhospital death. 30 Compared with HSMRs specific to clinical condition, hospital-wide HSMRs do not enable hospital clinicians or administrators to easily pinpoint correctable processes of care at the level of the individual departments or units that account for most quality problems (eg, surgery at Bundaberg Base Hospital in 2003–2005 and paediatric cardiac surgery at Bristol Royal Infirmary in 1984–1995). Even within a hospital whose overall HSMR is 100 or less, individual diagnoses and procedures may demonstrate higher than expected mortality.
Does the overall HSMR as a screening tool engender quality improvement?

There are relatively few studies (all of which are uncontrolled before–after analyses) assessing whether individual hospitals with initial HSMRs above 100 have responded by implementing quality improvement programs that have then led to subsequent reductions in HSMR. In these studies, it remains unclear whether the HSMR was chosen as a quality measure by hospital staff wanting to enact quality improvement in response to other indicators of concern, or whether a pre-existing HSMR was itself the primary catalyst for action. It is also uncertain whether subsequent improvement in HSMR was due to chance, regression to the mean, changes in coding and admission policies, removal of palliative care patients, secular trends, or real effects of local practice optimisation.

In 2009, a UK hospital guide stated that HSMRs had drawn attention to hospitals of concern, most notably Mid Staffordshire NHS Foundation Trust, and that, as a consequence, this hospital subsequently reduced its HSMR from 127 to 93 in just 2 years. However, the HSMR had been elevated for at least 3 years before a public inquiry exposed its poor standards of care, which were already well known to hospital staff. The inquiry, not the reporting of HSMR, was the likely catalyst for remedial action. Most of the decrease in the HSMR (from 127 to 93) occurred very quickly — within 12 months of the inquiry — suggesting that patient de-selection and coding changes were largely responsible for the observed decrease in mortality, not practice change. Moreover, at least 21 other hospitals in the UK have demonstrated HSMRs above 100, of which seven have had HSMRs higher than Mid Staffordshire for at least 5 years. These observations challenge the notion that the HSMR, as a screening tool for quality, can, by itself, predictably drive practice improvement and distinguish local improvement effects from broad secular trends.

Alternative strategies for using the HSMR in improving quality

To be a reliable and trustworthy quality-assessment tool, the HSMR requires comprehensive and valid patient-level data, robust risk adjustment, intimate knowledge of its limitations, and an ability to pinpoint potential quality problems. As none of these criteria are currently being met, we believe that the overall HSMR is not yet sufficiently mature to be applied to all hospitals at one point in time and serve as a useful national indicator of hospital quality.

An alternative strategy worthy of more research might be to use the overall HSMR to monitor changes in mortality over time internally within individual hospitals. This could be complemented by diagnosis-specific HSMRs, again calculated at the hospital level, for well defined, high-volume, high-risk diagnoses associated with evidence-based standardised care processes. Diagnosis-specific HSMRs would allow correctable variances in care to be easily ascertained. Such within-hospital monitoring circumvents much of the confounding inherent in between-hospital comparisons, as each hospital serves as its own historical control, assuming no substantive change in coding practices and casemix over the short to medium term. Health roundtables could be convened wherein different hospitals share information on how they have identified, responded to, and evaluated improvement in care deficiencies with the aid of diagnosis-specific HSMRs.

However, within-hospital HSMRs, even if they are calculated annually, must be accompanied by other tools for the early detection of poor-quality care at the individual hospital level. These include:

- Mandated chart review of all in-hospital deaths, and those occurring within 2 weeks after discharge.
- Ongoing audit or registry-based review of evidence-based clinical processes for high-volume, high-risk conditions. While process-of-care indicators must be chosen with care (in terms of patient eligibility criteria and clinical documentation of reasons for exclusion) and audits are more resource intense, they identify deficiencies amenable to quality-improvement strategies that hospitals can readily implement.
- Adverse event screening and targeted case review of all incidents likely to reflect quality problems for which preventive strategies are available (eg, unplanned transfers to intensive care, catheter-related bacteremias, venous thromboembolism, serious medication errors).
- Use of risk-adjusted control charts that flag unfavourable trends in outcomes of specific diagnoses or patient populations.

Conclusion

The overall HSMR based on routinely collected data can falsely label hospitals as poor performers and fail to identify many that harbour quality problems. The overall HSMR is not yet “fit for purpose” as a quality-screening tool for all hospitals. To avoid inappropriate responses, it should not be used in publicly reported interhospital comparisons. Diagnosis-specific HSMRs, calculated at the level of individual hospitals, are a potentially more fruitful method for monitoring mortality over time for specific diagnoses, which may allow earlier identification of care deficiencies that are responsive to hospital quality improvement programs.

Competing interests

None identified.

Author details

Ian A Scott, MHA, MEd, FRACP, Director1
Caroline A Brand, BA, MPH, FRACP, Associate Professor2
Grant E Phelps, MBA, FRACP, AFRACMA, Gastroenterologist3
Anna L Barker, BPhy, MPhy, PhD, Research Fellow4
Peter A Cameron, MB BS, MD, FACEM, Director2
1 Department of Internal Medicine and Clinical Epidemiology, Princess Alexandra Hospital, Brisbane, QLD.
2 Centre for Research Excellence in Patient Safety, Monash University, Melbourne, VIC.
3 Ballarat Health Services, Ballarat, VIC.
Correspondence: ian_scott@health.qld.gov.au

References

The MJA would like to encourage its readers to submit obituaries of doctors who have died within the past 6 months so that we can acknowledge their contribution to the medical community. The obituaries should consist of approximately 350 words and include biographical details such as last position held, place and date of birth, place of qualification and date (if possible), postgraduate qualifications and personal interests. An electronic photograph should accompany the obituary, preferably 300 dpi, jpeg or tiff file. The obituary may be published in print and online, or online only. The article may be truncated in the print version.

If you wish to submit an obituary, upload it to http://www.editorialmanager.com/mja

Provenance: Not commissioned; externally peer reviewed.

(Received 12 May 2010, accepted 16 Nov 2010)

See pages 623 and 658.