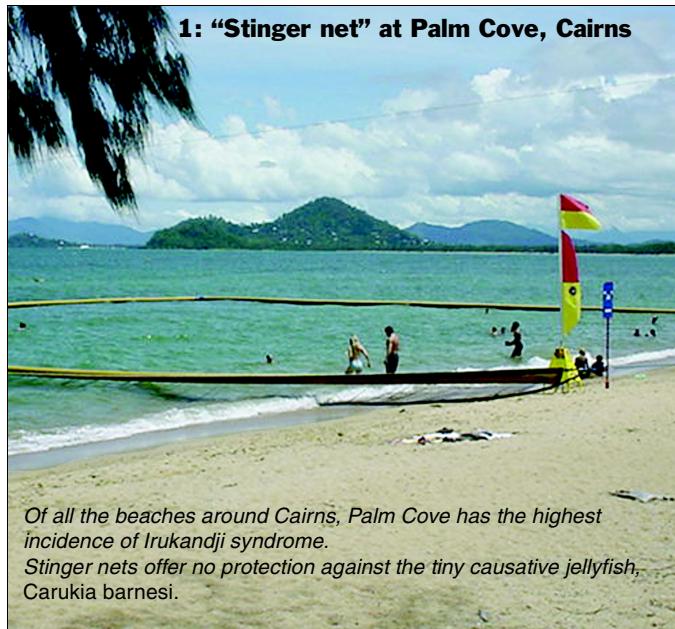


Jellyfish envenoming syndromes: unknown toxic mechanisms and unproven therapies

Paul M Bailey, Mark Little, George A Jelinek and Jacqueline A Wilce


*Interest in envenoming syndromes caused by Australian jellyfish has been intense since the deaths in early 2002 of two tourists in Queensland, attributed to the Irukandji syndrome. We review current knowledge of these envenoming syndromes, mechanisms of venom action and therapy, focusing on the deadly box jellyfish, *Chironex fleckeri*, and the array of jellyfish thought to cause the Irukandji syndrome. Current understanding of jellyfish venom activity is very limited, and many treatments are unproven and based on anecdote. (MJA 2003; 178: 34-37)*

WORLDWIDE MEDIA ATTENTION recently focused on Australia following the first two known human fatalities attributed to the Irukandji syndrome in Queensland in 2002.¹ Jellyfish envenoming represents a major cost to northern Australian communities in terms of public health, leisure and tourism. Management of these syndromes depends on improved understanding of venom action and critical analysis of current therapy.

We review the current state of knowledge of envenoming syndromes caused by Australian jellyfish, the mechanisms of venom action and management. We focus on the deadly box jellyfish, *Chironex fleckeri*, and the array of jellyfish thought to cause the Irukandji syndrome. Information was obtained from a search of MEDLINE, EMBASE and SciFinder Scholar for articles published in English over the period 1966–2002, using the keywords *jellyfish*, *venom*, *Chironex fleckeri*, *Irukandji*, *Carukia barnesi*, *antivenom*, *pressure immobilisation bandaging*, *verapamil* and *therapy*.

Chironex fleckeri

The box jellyfish, *C. fleckeri*, is found in tropical waters of Australia's north, from Gladstone in Queensland to Broome in Western Australia (Boxes 1 and 2). It is most prevalent in summer, although stings have been reported year-round.¹ The jellyfish has a transparent box-shaped bell measuring up to 20 cm by 30 cm and weighing up to 6 kg, while the total length of tentacles may exceed 60 m.³ Skin contact with *C. fleckeri* tentacles can result in dermonecrosis, pain

and death, occasionally with alarming speed. Some patients also develop delayed cutaneous hypersensitivity reactions at the sting site.⁴

There have been 67 human deaths attributed to *C. fleckeri*, the most recent a six-year-old boy at Yarrabah, near Cairns in Queensland, in 1999.¹ However, despite this jellyfish's reputation as the "world's most venomous animal",⁵ the vast majority of human stings are of little consequence.⁴ Most are managed with no analgesia, local ice packs or oral analgesia only, and rarely require hospital admission.

The mechanism of action of *C. fleckeri* venom in severe envenoming remains unclear, but the key events appear to be cardiac or respiratory failure, or both.^{6,7} Some patients with severe *C. fleckeri* envenoming have been successfully treated by expired-air resuscitation alone,^{8,9} but fatalities have also occurred due to cardiac toxicity in mechanically ventilated patients.¹⁰

The Irukandji syndrome

A number of jellyfish can cause the Irukandji syndrome,¹¹ although only *Carukia barnesi* is conclusively known to do

Departments of Biochemistry and Emergency Medicine, University of Western Australia, Crawley, WA.

Paul M Bailey, FACEM, PhD Scholar.

Department of Emergency Medicine, Sir Charles Gairdner Hospital, Nedlands, WA.

Mark Little, FACEM, MPHTM, Emergency Physician; also at Tropical Australian Stinger Research Unit, Cairns, QLD;

George A Jelinek, MD, FACEM, Chairman of Department; and Professor, University of Western Australia, Crawley, WA.

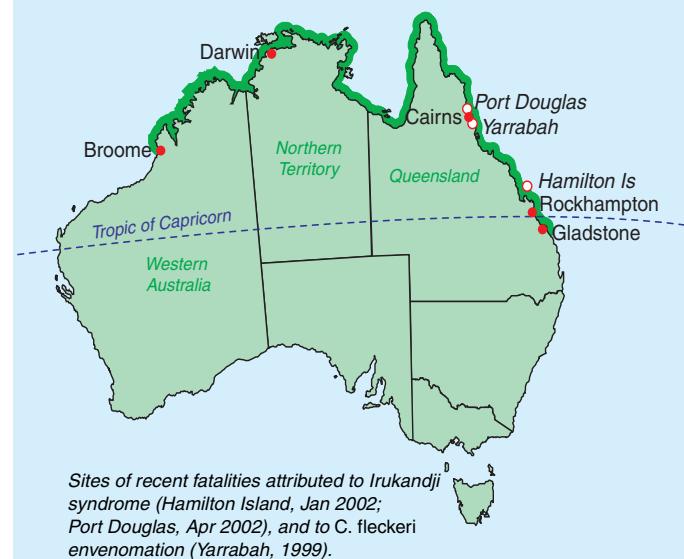
Department of Biochemistry, University of Western Australia, Crawley, WA.

Jacqueline A Wilce, BSc, PhD, Research Fellow.

Reprints will not be available from the authors. Correspondence: Dr P M Bailey, Department of Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009. pbailey@iinet.net.au

so. *C. barnesi* is a small carybdeid jellyfish with a transparent bell 1.5–2.5 cm in diameter. The infrequency of sightings or capture of *C. barnesi* and other small jellyfish that may cause the Irukandji syndrome makes precise knowledge of its geographic distribution problematic. Cases of Irukandji syndrome have occurred from Rockhampton in Queensland to Broome, although prevalence is greatest in the Cairns region. Recently, an Irukandji-like syndrome was reported in Hawaii.¹²

The Irukandji syndrome most commonly presents with generalised pain, hypertension (often severe), nausea, vomiting, and distress. The similarity of many of these symptoms to decompression sickness can provide a diagnostic challenge in scuba divers. Most patients presenting to emergency departments are treated with opiate analgesia, and about half require admission. A small number require advanced life support, usually because of cardiac failure.¹³


Catecholamine excess has long been proposed as a significant underlying mechanism in severe Irukandji syndrome.^{1,3,21} Victims develop symptoms mimicking medical conditions associated with endogenous catecholamine excess, such as phaeochromocytoma. Experiments in ventilated piglets showed a 200-fold increase in serum noradrenalin levels and a 100-fold increase in serum adrenalin levels after injection with crude extract of *C. barnesi*.²² These experiments quantified for the first time a relationship between experimental envenoming by *C. barnesi* and a hypercatecholaminergic state. However, there is no evidence of further deterioration in patients with cardiac dysfunction associated with severe Irukandji syndrome treated with adrenalin infusions.¹¹

The mechanism of the cardiac dysfunction is yet to be elucidated. A review of 11 cases of pulmonary oedema developing in patients with Irukandji syndrome suggested that these patients had features of myocarditis.²³ In a review of 116 patients with Irukandji syndrome presenting to Cairns Base Hospital in the summer of 2001–2002, 25 had raised serum levels of troponin I.²⁴ Eighteen of these 25 patients had echocardiography, with six showing echocardiographic evidence of cardiac dysfunction. Significantly, no patients developed clinical cardiac failure. It is unclear whether the cardiac dysfunction is caused by a myotoxin or the hypercatecholaminergic state, or a combination.

Venom delivery and action

Jellyfish venom is delivered into prey or victims by millions of microscopic stinging cells, known as nematocysts. Light microscopy examination of nematocysts recovered from victims' skin is used to identify the envenoming jellyfish, particularly in *Chironex* stings. Two techniques are used to harvest nematocysts — scalpel-blade scraping of the sting site, and sticky-tape sampling. These tests generally demonstrate good specificity (ie, positive nematocyst identification correlates well with observed clinical syndromes).¹⁴ Both methods also appear to have similar efficacy in terms of nematocyst retrieval, although, given the low nematocyst identification rates in the Irukandji syndrome, their sensitivity remains unknown.

2: Distribution of *Chironex fleckeri* stings and Irukandji syndrome

The rapid onset of systemic symptoms after major jellyfish envenoming by *C. fleckeri* suggests that venom is "most probably introduced directly into blood vessels".¹⁵ Postmortem evidence from the last *C. fleckeri* fatality demonstrated nematocyst barbs penetrating the vascular dermis.¹⁶

C. fleckeri venom has haemolytic, lethal, myotoxic and dermonecrotic effects.¹⁷ Current evidence suggests that the venom toxins are proteinaceous and target specific organs. Monoclonal antibodies capable of neutralising *C. fleckeri*-induced haemolysis did not protect against the lethal effects of venom.¹⁸ Several myotoxins, with molecular weights of about 600 kDa and 150 kDa, have been reported in *C fleckeri* venom.^{19,20} These toxins showed significant lethality in a mouse model of envenomation and may play a role in human cardiotoxicity.³ We speculate that these and other, as yet unidentified, proteins cause ion flux and transmitter release through altering cell membrane permeability, either through specific interactions with ion-channels or receptors or through non-specific interactions with cell membranes.

Treatment of jellyfish envenoming

Prevention and first aid

The only reliable preventive measure is to avoid any contact with sea water. Other measures include wearing "stinger suits" or swimming inside "stinger nets" (Box 1), although these do not appear to protect against Irukandji syndrome.¹³ First aid measures include retrieval of the patient from the water, activation of the emergency medical system, and cardiopulmonary resuscitation, if appropriate. Acetic acid irreversibly inhibits firing of previously undischarged *C. fleckeri* nematocysts,²⁵ and has greatest acceptance for beachside treatment of jellyfish stings; large amounts of vinegar are placed in prominent positions along swimming beaches in jellyfish-endemic areas.

3: Characteristics of *Chironex fleckeri* antivenom**Derived from sheep serum**

Carries risk of anaphylaxis, although rare

Indications:

- Cardiorespiratory instability
- Cardiac arrest
- Severe pain unrelieved by narcotics

Dose:

- Initial dose is three ampoules, diluted 1 in 10 with normal saline
- If cardiac arrest, give up to six ampoules as an intravenous bolus
- Has been given safely as an intramuscular dose by ambulance staff before reaching hospital

Pressure immobilisation bandaging

Pressure immobilisation bandaging (PIB) is advocated by Queensland^{26,27} and national²⁸ authorities for first aid in jellyfish stings, but not by Northern Territory authorities.²⁹ It was first proposed because of its effectiveness in treating elapid snakebite,³⁰ but the link between treatments for snakebite and jellyfish stings is tenuous. Animal models demonstrate that PIB slows entry of snake venom to the circulation by halting lymphatic flow from the venom depot.³¹ However, in jellyfish stings, nematocysts may be widely distributed on victims' skin, and there is evidence that venom enters the victim's bloodstream directly rather than via lymphatics.¹⁶ No animal studies have been performed to demonstrate a beneficial effect of PIB in jellyfish stings, and a recent review found no scientific evidence to support the ongoing use of PIB in this setting.¹⁶

Furthermore, a significant amount of venom may remain in discharged nematocysts adherent to the patient's skin.³² An in-vitro model of nematocyst discharge showed that pressure equivalent to PIB caused further venom liberation from previously electrically discharged nematocysts from *Chiropsalmus* spp.³² Similarly, pressure equivalent to PIB caused additional venom release from naturally discharged *C. fleckeri* nematocysts exposed to vinegar, in amount similar to the initial firing.³³

PIB in jellyfish envenoming thus remains at best unproven, and at worst potentially dangerous. More evidence is required to delineate its role in human jellyfish envenoming. The Australian Resuscitation Council has recently announced a change in advice to a more neutral position.³⁴

Treatment of *Chironex fleckeri* envenoming**Antivenom**

C. fleckeri antivenom is produced using "milked" venom, obtained by electrical stimulation of *C. fleckeri* tentacles. The antivenom neutralises the lethal, haemolytic, dermonecrotic and pain-inducing effects of milked venom and whole-tentacle extracts in experimental animal models.^{3,5,6,35,36} However, it is less effective in neutralising crude nematocyst venom (obtained by mechanical rupture of nematocysts) compared with milked venom in a mouse model,⁵ creating doubt as to whether the milked venom used in its production contains all the lethal factors present in native venom.

Evidence supporting the efficacy of *C. fleckeri* antivenom in human envenoming is anecdotal, with several reports of successful use.^{9,30,37} However, there is also a report of survival in major envenoming in the absence of antivenom.⁸ *C. fleckeri* antivenom appears safe to use. It is widely available in *C. fleckeri*-endemic areas, and is carried routinely by Queensland paramedics. As most patients who are envenomed by *C. fleckeri* have minimal symptoms, we believe that antivenom should be used only in those with cardiorespiratory instability, including cardiac arrest, or severe pain unrelieved by opiate analgesia (Box 3).

Verapamil

Verapamil was initially advocated to treat *C. fleckeri* envenoming on the basis of isolated organ experiments showing that *C. fleckeri* venom causes arterial constriction, reduced coronary blood flow and bradycardia.^{38,39} There is experimental evidence that these effects may be due to increased intracellular calcium concentrations in the affected organs.^{6,40} Two studies reported that verapamil significantly delayed death in experimental *C. fleckeri* envenoming, perhaps buying time for more definitive therapy.^{41,42} However, verapamil was associated with increased morbidity and mortality in a pig model of envenoming.⁶

There are theoretical reasons to be cautious in using verapamil for the potentially unstable patient, as it may potentiate hypotension and induce cardiac dysrhythmias. At best, it can be considered appropriate as experimental treatment for the patient *in extremis*. Clearly, more evidence is required to determine its role.

Treatment of dermonecrosis and delayed cutaneous hypersensitivity reactions

Dermonecrosis is a frequent acute complication of serious *C. fleckeri* stings. While indomethacin and methysergide have been shown to reduce *C. fleckeri*-induced capillary leakage,⁴³ no animal or human clinical data have identified any agent that reduces long-term scarring. There are case reports of improvement in both acute and long-term cutaneous damage when *C. fleckeri* antivenom is used,³⁰ but it should be noted that the acute skin changes of *C. fleckeri* envenoming often resolve spontaneously. At present, acute dermonecrosis is treated as a burn, with specific attention to avoiding secondary bacterial infection.⁷

Delayed hypersensitivity reactions are a common late complication of *C. fleckeri* stings, occurring in about 50% of cases, and are usually minor.⁴ Corticosteroid cream and oral antihistamines are the mainstay of treatment.

Treatment of Irukandji syndrome

Evidence as to the best treatment for Irukandji syndrome is anecdotal. The relative infrequency of patients with severe illness makes the prospect of high quality evidence unlikely.

Analgesia

Narcotic analgesia is routinely required, but no single agent has met with universal approval. There are several theoretical reasons to avoid pethidine, including potential for nor-pethidine toxicity and myocardial depression.

Antihypertensive agents

Patients are often hypertensive at presentation, although it is unclear if this is due to pain or catecholamine-like effect. Phentolamine has been used to treat hypertension,⁴⁴ but is rarely used in emergency departments and may not be available in some centres. An agent with a shorter half-life may be more advisable given the potential for cardiovascular collapse. Glyceryl trinitrate has been used¹⁵ and may be the first-line agent for hypertension. As cases of echocardiographically proven cardiac dysfunction have occurred, caution should be exercised in avoiding life-threatening hypotension.

Treatment of pulmonary oedema

Pulmonary oedema is treated in the usual manner, with supplemental oxygen, inotropic support with dopamine and adrenalin, and positive-pressure ventilation. The underlying cause appears to be significant cardiac dysfunction which returns to normal within three to four days.

Conclusions

Fundamental knowledge of the biology, venomology and toxicomes of medically important jellyfish is severely lacking. Many therapies currently used for jellyfish envenoming are based on anecdote and may be harmful. Formal understanding of the functional components of jellyfish venom may reveal a mechanism of action that is reversible with currently available pharmaceuticals. Alternatively, novel treatments for envenomed humans may also be developed, based on a more thorough knowledge of the mechanism of action of the venom components.

Competing interests

None identified.

Acknowledgements

P M B holds a Post Graduate Research Scholarship from the National Health and Medical Research Council and an Ad Hoc Scholarship through the Department of Medicine, University of Western Australia. Research was funded by a Raine Research Foundation Prizing Grant awarded to J A W, who is an Australian Research Council Research Fellow.

References

1. Fenner PJ, Hadok JC. Fatal envenomation by jellyfish causing Irukandji syndrome. *Med J Aust* 2002; 177: 362-363.
2. Fenner P. Marine envenomation: An update. A presentation on the current status of marine envenomation first aid and medical treatments. *Emerg Med (Fremantle)* 2000; 12: 295-302.
3. Williamson JA, Fenner PJ, Burnett J, Rifkin J. Venomous and poisonous marine animals: a medical and biological handbook. Sydney: NSW University Press, 1996.
4. O'Reilly GM, Ibsister GK, Lawrie PM, et al. Prospective study of jellyfish stings from tropical Australia, including the major box jellyfish *Chironex fleckeri*. *Med J Aust* 2001; 175: 652-655.
5. Endean R, Sizemore DJ. The effectiveness of antivenom in countering the actions of box- jellyfish (*Chironex fleckeri*) nematocyst toxins in mice. *Toxicon* 1988; 26: 425-431.
6. Tibballs J, Williams D, Sutherland SK. The effects of antivenom and verapamil on the haemodynamic actions of *Chironex fleckeri* (box jellyfish) venom. *Anaesth Intensive Care* 1998; 26: 40-45.
7. Currie B. Clinical implications of research on the box-jellyfish *Chironex fleckeri*. *Toxicon* 1994; 32: 1305-1313.
8. Maguire EJ. *Chironex fleckeri* ("sea wasp") sting. *Med J Aust* 1968; 2: 1137-1138.
9. Williamson JA, Callanan VI, Hartwick RF. Serious envenomation by the Northern Australian box-jellyfish (*Chironex fleckeri*). *Med J Aust* 1980; 1: 13-16.
10. Lumley J, Williamson JA, Fenner PJ, et al. Fatal envenomation by *Chironex fleckeri*, the north Australian box jellyfish: the continuing search for lethal mechanisms. *Med J Aust* 1988; 148: 527-534.
11. Little M, Mulcahy RF, Wenck DJ. Life-threatening cardiac failure in a healthy young female with Irukandji syndrome. *Anaesth Intensive Care* 2001; 29: 178-180.
12. Yoshimoto CM, Yanagihara AA. Cnidarian (coelenterate) envenomations in Hawai'i improve following heat application. *Trans R Soc Trop Med Hyg* 2002; 96: 300-303.
13. Little M, Mulcahy RF. A year's experience of Irukandji envenomation in far north Queensland. *Med J Aust* 1998; 169: 638-641.
14. Currie BJ, Wood YK. Identification of *Chironex fleckeri* envenomation by nematocyst recovery from skin. *Med J Aust* 1995; 162: 478-480.
15. Rifkin J, Endean R. The structure and function of the nematocysts of *Chironex fleckeri* Southcott, 1956. *Cell Tissue Res* 1983; 233: 563-577.
16. Little M. Is there a role for the use of pressure immobilisation bandages in the treatment of jellyfish envenomation in Australia. *Emerg Med (Fremantle)* 2002; 14: 171-174.
17. Baxter EH, Marr AGM. Sea wasp *Chironex fleckeri* venom: lethal, hemolytic and dermonecrotic properties. *Toxicon* 1969; 7: 195.
18. Collins SP, Comis A, Marshall M, et al. Monoclonal antibodies neutralizing the haemolytic activity of box jellyfish (*Chironex fleckeri*) tentacle extracts. *Comp Biochem Physiol B Biochem Mol Biol* 1993; 106: 67-70.
19. Endean R. Separation of two myotoxins from nematocysts of the box jellyfish (*Chironex fleckeri*). *Toxicon* 1987; 25: 483-492.
20. Endean R, Monks SA, Cameron AM. Toxins from the box-jellyfish *Chironex fleckeri*. *Toxicon* 1993; 31: 397-410.
21. Fenner PJ, Williamson JA, Burnett JW, et al. The "Irukandji syndrome" and acute pulmonary oedema. *Med J Aust* 1988; 149: 150-156.
22. Tibballs J, Hawdon G, Winkel K. Mechanism of cardiac failure in Irukandji syndrome and first aid treatment for stings. *Anaesth Intensive Care* 2001; 29: 552.
23. Little M, Pereira P, Seymour J, et al. Severe Irukandji syndrome. The epidemiology, management and name change? Proceedings of the International Society for Toxinology 6th Asia-Pacific Congress on Animal, Plant and Microbial Toxins. Cairns, QLD; 8-12 Jul 2002: 41.
24. Huynh T, Seymour J, Mulcahy R, et al. Correlation between severity of Irukandji syndrome and nematocysts identification from skin scrapings. Proceedings of the International Society for Toxinology 6th Asia-Pacific Congress on Animal, Plant and Microbial Toxins. Cairns, QLD; 8-12 Jul 2002: 42.
25. Hartwick R, Callanan V, Williamson J. Disarming the box-jellyfish: nematocyst inhibition in *Chironex fleckeri*. *Med J Aust* 1980; 1: 15-20.
26. Queensland Ambulance Service. Clinical practice manual. Case management guidelines for poisoning, envenomation, cuboidal jellyfish. Brisbane: Queensland Ambulance Service, 1998.
27. Fenner P. The marine stinger guide — dangerous jellyfish and other sea creatures in Australia. Identification and treatment. Brisbane: Surf Lifesaving Association of Australia, Queensland State Centre Inc, 1985.
28. Council AR. Envenomation — jellyfish stings. Australian Resuscitation Council Policy statement No 8.9.6. Melbourne: Australian Resuscitation Council, 1996.
29. Currie B. Box-Jellyfish in the Northern Territory. *Northern Territory Dis Control Bull* 1998; 5: 12-14.
30. Williamson JA, Le Ray LE, Wohlfahrt M, Fenner PJ. Acute management of serious envenomation by box-jellyfish (*Chironex fleckeri*). *Med J Aust* 1984; 141: 851-853.
31. Sutherland SK, Coulter AR, Harris RD. Rationalisation of first-aid measures for elapid snakebite. *Lancet* 1979; 1: 183-185.
32. Pereira PL, Carrette T, Cullen P, et al. Pressure immobilisation bandages in first-aid treatment of jellyfish envenomation: current recommendations reconsidered. *Med J Aust* 2000; 173: 650-652.
33. Seymour J, Carrette T, Cullen P, et al. The use of pressure immobilisation bandages in Cubozoan envenomings. *Toxicon* 2002; 40: 1503-1505.
34. Jacobs I. Use of the pressure immobilisation bandage in jellyfish stings. Australian Resuscitation Council Press Release, 5 Aug 2002. Available at http://www.resus.org.au/arc_pib_statement.pdf (accessed Nov 2002).
35. Calton GJ, Burnett JW. Partial purification of *Chironex fleckeri* (sea wasp) venom by immunochromatography with antivenom. *Toxicon* 1986; 24: 416-420.
36. Bloom DA, Burnett JW, Hebel JR, Alderslade P. Effects of verapamil and CSL antivenom on *Chironex fleckeri* (box- jellyfish) induced mortality. *Toxicon* 1999; 37: 1621-1626.
37. Fenner PJ, Williamson JA, Blenkin JA. Successful use of *Chironex* antivenom by members of the Queensland Ambulance Transport Brigade. *Med J Aust* 1989; 151: 708-710.
38. Freeman SE. Actions of *Chironex fleckeri* toxins on cardiac transmembrane potentials. *Toxicon* 1974; 12: 395-404.
39. Turner RJ, Freeman SE. Effects of *Chironex fleckeri* toxin on the isolated perfused guinea pig heart. *Toxicon* 1969; 7: 277-286.
40. Mustafa MR, White E, Hongo K, et al. The mechanism underlying the cardiotoxic effect of the toxin from the jellyfish *Chironex fleckeri*. *Toxicol Appl Pharmacol* 1995; 133: 196-206.
41. Burnett JW, Calton GJ. Response of the box-jellyfish (*Chironex fleckeri*) cardio-toxin to intravenous administration of verapamil. *Med J Aust* 1983; 2: 192-194.
42. Burnett JW, Othman IB, Endean R, et al. Verapamil potentiation of *Chironex* (box-jellyfish) antivenom. *Toxicon* 1990; 28: 242-244.
43. Burnett JW, Calton GJ. Pharmacological effects of various venoms on cutaneous capillary leakage. *Toxicon* 1986; 24: 614-617.
44. Fenner PJ, Williamson J, Callanan VI, Audley I. Further understanding of, and a new treatment for, "Irukandji" (*Carukia barnesi*) stings. *Med J Aust* 1986; 145: 569-574.

(Received 26 Jun 2002, accepted 24 Oct 2002)