

Supporting Information

Supplementary methods and results

This appendix was part of the submitted manuscript and has been peer reviewed. It is posted as supplied by the authors.

Appendix to: Abdel Shaheed C, Ferreira G, Dmitritchenko A, et al. The efficacy and safety of paracetamol for pain relief: an overview of systematic reviews. *Med J Aust* 2021; doi: 10.5694/mja2.50992.

The efficacy and safety of paracetamol for pain relief: an overview of systematic reviews

Supplementary files (bold: major support files)

 Table 1. Search strategy

Table 2. Determination of Grading of Recommendations Assessment, Development and Evaluation criteria (GRADE) ratings for randomised controlled trials

Table 3. Clinical characteristics of the 36 included reviews, including pain and adverse events outcomes reported

Table 4. Systematic reviews excluded after reviewing full text, with reasons for exclusion

Table 5. Table 5. Excluded systematic reviews on the same conditions as included reviews

Table 6. Summary of effect estimates extracted from included reviews or calculated for our review

Table 7. Summary of reviews that provided effect estimates, overall quality of evidence ratings and risk of bias for included randomised controlled trials

Table 8. Effect size estimates extracted from systematic reviews or computed from data in original publications

Table 9. Cochrane risk of bias assessments we undertook for trials because they were not undertaken in the included systematic reviews

Table 10. AMSTAR-2 ratings for the 36 included systematic reviews

Table 11. Adverse events reported by included systematic reviews

Table 12. Sensitivity analysis, applying only one downgrade for each GRADE domain, when appropriate

Table 13. Summary of all effect estimates directly extracted from reviews or directly determined for our review

Table 1. Search strategy

1.	META-ANALYSIS.mp OR systematic review.mp OR systematic\$ adj25 review\$ OR systematic\$ adj25 overview\$ OR meta-analy\$ or metaanaly\$ or (meta analy\$)
	OR synthesis OR review OR academic review
2.	ANIMAL/ not HUMAN/
3.	1 NOT 2
4.	Acetaminophen.mp OR paracetamol.mp OR propacetamol.mp
5.	3 and 4

Table 2. Determination of Grading of Recommendations Assessment, Development and Evaluation criteria (GRADE) ratings for randomised controlled trials

GRADE criterion	Description
Limitation in study	Risk of bias assessment for randomised controlled trials was determined independently by two reviewers using the Cochrane risk of bias tool
design	which considers random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment,
_	incomplete outcome data, selective reporting and other biases e.g. pharmaceutical company funding. Trials with unclear risk or high risk of bias
	were downgraded. A trial was considered unclear risk when a quarter or more domains were judged as unclear risk. A trial was considered high
	risk when one or more domains were judged as high risk. In cases where more than one trial contributed to an effect estimate, when more than
	25% of participants in the comparison were from trials at high overall risk of bias (i.e. one or more bias domains judged as high risk) we
	downgraded one level for the quality of evidence. We downgraded by two levels if 50% of participants in the comparison were from trials at high
	overall risk of bias.
Inconsistency of results	We downgraded one level if we identified important and non-explained heterogeneity through visual inspection or considerable heterogeneity in
	the I ² test (> 50%). If there was evidence of serious inconsistency (I^2 test > 75%) we downgraded by two levels.
Imprecision	Dichotomous outcomes: A) When the total number of events was < 300, we downgraded the evidence by one level. B) When the 95% confidence
	interval around the pooled or best estimate of effect included appreciable benefit or harm we downgraded by one level. We downgraded the
	evidence by two levels when there was imprecision due to both A) and B).
	Continuous outcomes: A) When the total sample size was < 400, we downgraded the evidence by one level. B) When the 95% confidence interval
	included appreciable benefit or harm, we downgraded the evidence by one level. We downgraded the evidence by two levels when there was
	imprecision due to both A) and B).
Publication bias	Assessed using funnel plot analysis/ Egger's regression test for ten or more studies. If this information was provided by the review, we adopted
	these results. We did not downgrade by two levels for this domain.

Systematic review	Pain condition	Outcomes Follow-up Intervention		Intervention	Comparison	Duration of therapy
Deussen et al 2011 [1]	Uterine cramping/involution after birth	Pain; Adverse events	6 h	Oral paracetamol 650 mg	Placebo	Single dose
Hazlewood et al 2012 [2]	Rheumatoid arthritis and rheumatoid synovitis	Mean pain relief 0–3 (0 no pain relief, 3 complete pain relief); Mean (%) maximum pain relief	Over 6 h	Paracetamol 1000 mg (2 x 500 mg tablets) – multiple doses over trial period oral	Placebo	Up to 17 days
Chou et al 2013 [3]	Perineal pain in early post- partum period	Proportion of people with 50% pain relief; Non serious adverse events	Various	Variable doses – 500 mg, 650 mg to 1000 mg likely oral	Placebo	All single dose
Derry et al 2013 [4]	Adults with acute migraine	Proportion of participants achieving relief of moderate to severe symptoms; Proportion of pain-free participants; At least one adverse event	2 h after dosing	Single dose oral paracetamol 1000 mg (likely immediate release formulation)	Placebo	Single dose
Porela- Tiihonen et al 2013 [5]	Cataract surgery	VAS (0–10); Adverse events	Immediately following surgery	Oral paracetamol 1 g	Vitamin C 400 mg	Single oral dose 1 hour before surgery
Li et al 2013 [6]	Cold symptoms	Pain; Headache; Achiness; Sore throat; Adverse events	2 h Oral paracetamol 500 mg or 1000 mg		Placebo	Single oral dose
Gurusamy et al 2014 [7]	Laparoscopic cholecystectomy	Pain (0–10 VAS); Serious adverse events	4-8 hours after procedure	1 mg intravenous 3 times daily or 1 g intravenous after intubation OR paracetamol (acetaminophen) 300 mg orally every 6 h for 48 h	Placebo	Over 48 hours
Bai et al 2015 [8]	Catheter-related bladder discomfort (CRBD)	Pain (0–10 VAS); Incidence of CRBD; Incidence of moderate severity CRBD;	Over 12 h Intravenous paracetamol 15mg/kg		Placebo	Single dose

Table 3. Clinical characteristics of the 36 included reviews, including pain and adverse events outcomes reported

Systematic review	Pain condition	Outcomes	Follow-up	Intervention	Comparison	Duration of therapy
De Oliviera et al 2015 [9]	Prevention of post-operative pain	Early post-operative pain (0–4 h; 0–10); Late post-operative pain (24 h); Incidence of nausea and vomiting	Before beginning of surgery or at end of surgery	Single dose intravenous paracetamol up to 2000 mg per dose	Placebo	Single dose
Hindocha et al 2015 [10]	Hysterosalpingography	Pain (0–100); Adverse events	During (ineffective) and 30 min after procedure (effective)	1 g paracetamol (dose form not reported)	Placebo	Taken 30 minutes before procedure
Ashley et al 2016 [11]	Dental pain in children	Post-operative pain reported 6–7 h by parent		80 mg paracetamol 20 minutes pre-operatively orally or paracetamol 15 minutes pre-operatively	Placebo	Single dose
McNicol et al 2016 [12]	Post-operative pain	Proportion of patients experiencing 50% pain relief; Mean difference in pain (VAS); Adverse events and serious adverse events	4 or 6 h after surgery	Intravenous propacetamol or paracetamol – paracetamol 1 g usual dose	Placebo	Single dose
Richer et al 2016 [13]	Children and adolescents with migraine	Proportion of pain-free participants	2 hours after dosing	Oral paracetamol 10 mg/kg immediate release formulation	Placebo	Single dose
Saragiotto et al 2016 [14]	Acute low back pain	Pain (0-100)	1, 2, 4, 12 weeks	Oral paracetamol up to 3990 mg daily (sustained release formulation)	Placebo	Up to 4 weeks
Sin et al 2016 [15]	People with abdominal pain	Pain (0–100) adverse events	20 and 40 min	Intravenous paracetamol 15 mg/kg	Placebo	Single dose over 3 minutes
Sjoukes et al 2016 [16]	Otitis media in children	Proportion with pain; Adverse events	48 h	Oral paracetamol 10 mg/kg 3 times daily	Placebo	48 hours
Stephens et al 2016 [17]	Episodic tension type headache	Pain,; Adverse events	2 h or over 24 h	Oral paracetamol 1000 mg as single dose or 500 mg to 1000 mg as multiple doses	Placebo	Single and multiple doses
Blank et al 2017 [18]	Abdominal surgery	Pain; Adverse events	24 h	Intravenous paracetamol up to 4 g usually over 24 h	Placebo	Multiple doses
Douzjian et al 2017 [19]	Post-cardiac surgery	Pain scores at 6, 12, 18, 24 h		Variable doses e.g. paracetamol 1 g intravenous every 6 h	Placebo	Multiple doses over 24 hours

Systematic review Garcia	Pain condition Renal colic	OutcomesFollow-upInterventionsolicPain (0–100)15 min andIntravenous paracetamol 1 g		Comparison Placebo	Duration of therapy Single dose	
Perdomo et al 2017 [20]		adverse events	0.5 h			
Martinez et al 2017 [21]	Major surgery (neurosurgery, gynaecological and orthopaedic surgery)	Pain (0–100) Serious adverse events	Not reported Doses unspecified		Placebo	NR
Monk et al 2017 [22]	Orthodontic treatment in adults	Pain (0–10 VAS) while biting or chewing	hile3, 6, 7 or 24500 mg to 650 mg oral paracetamol usually 1 hhbefore and 6 h after orthodontic procedure – up to 4doses after procedure		Placebo	Doses as described – variable
Shirvani et al 2017 [23]	Pulpal anaesthesia in patients with irreversible pulpitis	sia in Pain — eversible		Oral administration of a paracetamol 325 mg to 1000 mg monotherapy	Placebo	Single dose administered 30 min to 1 hour preoperatively
Wiffen et al 2017 [24]	Neuropathic pain	No RCTs identified				
Wiffen et al 2017 [25]	Cancer pain	Adverse events and serious adverse events (no RCTs reporting pain outcomes)	_	Paracetamol in addition to opioid analgesia	Same dose of opioid analgesia	_
Cooper et al 2018 [26]	Chronic non-cancer pain in children and adolescents	No RCTs identified				
Dixon et al 2018 [27]	Hip	NA	NA	NA	NA	NA
Guo et al 2018 [28]	Knee and Hip Arthroplasty	Pain; Adverse events (not specific to the 3 RCTs of interest)	24 h	1000 mg intravenous paracetamol or 2000 mg intravenous propacetamol every 6 hours	Placebo (in 3 RCTs)	Single and repeated dose
Lee et al 2019 [29]	Bariatric surgery	Pain (VAS)	24 h	Intravenous paracetamol every 6 h for 24 h	Placebo (saline)	Multiple doses
Leopoldino et al 2019 [30]	Knee and hip osteoarthritis	Pain (0–100); Adverse events	Immediate and short term	Oral paracetamol up to 4 g daily	Placebo	Up to 12 weeks
Ng et al 2019 [31]	Post caesarean	Pain (VAS)	Up to 48 h Intravenous paracetamol three or four times a day for up to 48 h or intravenous paracetamol 15mg/kg before induction of anaesthesia		Placebo	Single and multiple doses

Systematic review	Pain condition	Outcomes Follow-up Intervention		Intervention	Comparison	Duration of therapy
O'Neil et al 2019 [32]	Plastic surgery	Pain VAS or NRS	Over 24 h Various regimens, usually 1 g paracetamol up to 4 doses within 24 h		Placebo	Single dose or multiple dose
Tolska et al 2019 [33]	Tonsillectomy	Pain VAS (0–10)	24 h 1 g intravenous every 6 h or single dose		Placebo	Single dose or multiple dose
Campbell et al 2020 [34]	Otologic	Pain (CHEOPS, OPS)	Within 1 h	Oral Paracetamol 15 mg / kg single dose	Placebo	Single dose
Ghaffarpasand et al 2020 [35]	Post-craniotomy	Pain VAS	Over 24 h	Intravenous paracetamol pre-incision or upon surgical closure and then every 6 h for a total of 24 h	Placebo	Multiple dose
Ohlsson et al 2020 [36]	Pain in newborns	PIPP score; NIPS score	3 minutes following lancing	Oral paracetamol up to 40 mg/kg 90 min before heel lance	Sterile water	Single administration

CHEOPS= The Children's Hospital of Eastern Ontario Pain Scale; NA=not applicable; NRS=numerical rating scale; NIPS=Neonatal Infant Pain Scale; OPS=objective pain scale; PIPP= Premature Infant Pain Profile Score; RCT=randomised controlled trial; VAS=visual analogue scale.

Table 4. Systematic reviews excluded after reviewing full text, with reasons for exclusion

 Allan GM, Arroll B. Prevention and treatment of the common cold: making sense of the evidence. <i>CMAJ</i> 2014; 186: 190-199. Angelopoulou MV, Vlachou V, Halazonetis DJ. Pharmacological management of pain during orthodontic treatment: a meta-analysis. <i>Orthod Craniofac Res</i> 2012; 15: 71-83. Bannuru RR, Schmid CH, Kent DM, et al. Comparative effectiveness of pharmacologic interventions for knee osteoarthritis: a systematic review and network meta-analysis. <i>Ann Med</i> 2015; 162: 46-54. Cetira Filho EL, Carvalho FSR, de Barros Silva PG, et al. Preemptive use of oral nonsteroidal anti-inflammatory drugs for the relief of inflammatory events after surgical removal third molars: a systematic review with meta-analysis of placebo-controlled randomized clinical trials. <i>J Craniomaxillofac Surg</i> 2020; 48: 293-307. da Costa BR, Reichenbach S, Keller N, et al. Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis: a network meta-analysi 2017; 390: e21-e33. Enthoven WT, Roelofs PD, Deyo RA, et al. Non-steroidal anti-inflammatory drugs for chronic low back pain. <i>Cochrane Database Syst Rev</i> 2016;; CD012087. Jeric M, Surjan N, Jelicic Kadic A, et al. Treatment of acute migraine attacks in children with analgesics on the World Health Organization Essential Medicines List: a systematic and GRADE evidence synthesis. <i>Cephalalgia</i> 2018; 38: 1592-1607. Liang L, Cai Y, Li A, Ma C. The efficiency of intravenous acetaminophen for pain control following total knee and hip arthroplasty: a systematic review and meta-analysis. <i>Media</i> (<i>Baltimore</i>) 2017; 96: e8586. Machado GC, Maher CG, Ferreira PH, et al. Efficacy and safety of paracetamol for spinal pain and osteoarthritis: systematic review and meta-analysis of randomised placebo con trials. <i>BMJ</i> 2015; 350: h1225. 	
 Angelopoulou MV, Vlachou V, Halazonetis DJ. Pharmacological management of pain during orthodontic treatment: a meta-analysis. <i>Orthod Craniofac Res</i> 2012; 15: 71-83. Bannuru RR, Schmid CH, Kent DM, et al. Comparative effectiveness of pharmacologic interventions for knee osteoarthritis: a systematic review and network meta-analysis. <i>Ann</i> <i>Med</i> 2015; 162: 46-54. Cetira Filho EL, Carvalho FSR, de Barros Silva PG, et al. Preemptive use of oral nonsteroidal anti-inflammatory drugs for the relief of inflammatory events after surgical removal third molars: a systematic review with meta-analysis of placebo-controlled randomized clinical trials. <i>J Craniomaxillofac Surg</i> 2020; 48: 293-307. da Costa BR, Reichenbach S, Keller N, et al. Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis: a network meta-analysis 2017; 390: e21-e33. Enthoven WT, Roelofs PD, Deyo RA, et al. Non-steroidal anti-inflammatory drugs for chronic low back pain. <i>Cochrane Database Syst Rev</i> 2016;; CD012087. Jeric M, Surjan N, Jelicic Kadic A, et al. Treatment of acute migraine attacks in children with analgesics on the World Health Organization Essential Medicines List: a systematic and GRADE evidence synthesis. <i>Cephalalgia</i> 2018; 38: 1592-1607. Liang L, Cai Y, Li A, Ma C. The efficiency of intravenous acetaminophen for pain control following total knee and hip arthroplasty: a systematic review and meta-analysis. <i>Media</i> (<i>Baltimore</i>) 2017; 96: e8586. Machado GC, Maher CG, Ferreira PH, et al. Efficacy and safety of paracetamol for spinal pain and osteoarthritis: systematic review and meta-analysis of randomised placebo con trials. <i>BMJ</i> 2015; 350: h1225. 	
 Bannuru RR, Schmid CH, Kent DM, et al. Comparative effectiveness of pharmacologic interventions for knee osteoarthritis: a systematic review and network meta-analysis. <i>Ann Med</i> 2015; 162: 46-54. Cetira Filho EL, Carvalho FSR, de Barros Silva PG, et al. Preemptive use of oral nonsteroidal anti-inflammatory drugs for the relief of inflammatory events after surgical removal third molars: a systematic review with meta-analysis of placebo-controlled randomized clinical trials. <i>J Craniomaxillofac Surg</i> 2020; 48: 293-307. da Costa BR, Reichenbach S, Keller N, et al. Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis: a network meta-analysis 2017; 390: e21-e33. Enthoven WT, Roelofs PD, Deyo RA, et al. Non-steroidal anti-inflammatory drugs for chronic low back pain. <i>Cochrane Database Syst Rev</i> 2016;; CD012087. Jeric M, Surjan N, Jelicic Kadic A, et al. Treatment of acute migraine attacks in children with analgesics on the World Health Organization Essential Medicines List: a systematic and GRADE evidence synthesis. <i>Cephalalgia</i> 2018; 38: 1592-1607. Liang L, Cai Y, Li A, Ma C. The efficiency of intravenous acetaminophen for pain control following total knee and hip arthroplasty: a systematic review and meta-analysis. <i>Media (Baltimore)</i> 2017; 96: e8586. Machado GC, Maher CG, Ferreira PH, et al. Efficacy and safety of paracetamol for spinal pain and osteoarthritis: systematic review and meta-analysis of randomised placebo con trials. <i>BMJ</i> 2015; 350: h1225. 	
 Cetira Filho EL, Carvalho FSR, de Barros Silva PG, et al. Preemptive use of oral nonsteroidal anti-inflammatory drugs for the relief of inflammatory events after surgical removal third molars: a systematic review with meta-analysis of placebo-controlled randomized clinical trials. <i>J Craniomaxillofac Surg</i> 2020; 48: 293-307. da Costa BR, Reichenbach S, Keller N, et al. Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis: a network meta-analysis 2017; 390: e21-e33. Enthoven WT, Roelofs PD, Deyo RA, et al. Non-steroidal anti-inflammatory drugs for chronic low back pain. <i>Cochrane Database Syst Rev</i> 2016;; CD012087. Jeric M, Surjan N, Jelicic Kadic A, et al. Treatment of acute migraine attacks in children with analgesics on the World Health Organization Essential Medicines List: a systematic and GRADE evidence synthesis. <i>Cephalalgia</i> 2018; 38: 1592-1607. Liang L, Cai Y, Li A, Ma C. The efficiency of intravenous acetaminophen for pain control following total knee and hip arthroplasty: a systematic review and meta-analysis. <i>Media (Baltimore)</i> 2017; 96: e8586. Machado GC, Maher CG, Ferreira PH, et al. Efficacy and safety of paracetamol for spinal pain and osteoarthritis: systematic review and meta-analysis of randomised placebo con trials. <i>BMJ</i> 2015; 350: h1225. 	Intern
 da Costa BR, Reichenbach S, Keller N, et al. Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis: a network meta-analyse 2017; 390: e21-e33. Enthoven WT, Roelofs PD, Deyo RA, et al. Non-steroidal anti-inflammatory drugs for chronic low back pain. <i>Cochrane Database Syst Rev</i> 2016;; CD012087. Jeric M, Surjan N, Jelicic Kadic A, et al. Treatment of acute migraine attacks in children with analgesics on the World Health Organization Essential Medicines List: a systematic and GRADE evidence synthesis. <i>Cephalalgia</i> 2018; 38: 1592-1607. Liang L, Cai Y, Li A, Ma C. The efficiency of intravenous acetaminophen for pain control following total knee and hip arthroplasty: a systematic review and meta-analysis. <i>Media (Baltimore)</i> 2017; 96: e8586. Machado GC, Maher CG, Ferreira PH, et al. Efficacy and safety of paracetamol for spinal pain and osteoarthritis: systematic review and meta-analysis of randomised placebo con trials. <i>BMJ</i> 2015; 350: h1225. 	of lower
 2017; 390: e21-e33. Enthoven WT, Roelofs PD, Deyo RA, et al. Non-steroidal anti-inflammatory drugs for chronic low back pain. <i>Cochrane Database Syst Rev</i> 2016;; CD012087. Jeric M, Surjan N, Jelicic Kadic A, et al. Treatment of acute migraine attacks in children with analgesics on the World Health Organization Essential Medicines List: a systematic and GRADE evidence synthesis. <i>Cephalalgia</i> 2018; 38: 1592-1607. Liang L, Cai Y, Li A, Ma C. The efficiency of intravenous acetaminophen for pain control following total knee and hip arthroplasty: a systematic review and meta-analysis. <i>Medic (Baltimore)</i> 2017; 96: e8586. Machado GC, Maher CG, Ferreira PH, et al. Efficacy and safety of paracetamol for spinal pain and osteoarthritis: systematic review and meta-analysis of randomised placebo con trials. <i>BMJ</i> 2015; 350: h1225. 	sis. Lancet
 Enthoven W1, Roelots PD, Deyo RA, et al. Non-steroidal anti-inflammatory drugs for chronic low back pain. <i>Cochrane Database Syst Rev</i> 2016;; CD012087. Jeric M, Surjan N, Jelicic Kadic A, et al. Treatment of acute migraine attacks in children with analgesics on the World Health Organization Essential Medicines List: a systematic and GRADE evidence synthesis. <i>Cephalalgia</i> 2018; 38: 1592-1607. Liang L, Cai Y, Li A, Ma C. The efficiency of intravenous acetaminophen for pain control following total knee and hip arthroplasty: a systematic review and meta-analysis. <i>Medic (Baltimore)</i> 2017; 96: e8586. Machado GC, Maher CG, Ferreira PH, et al. Efficacy and safety of paracetamol for spinal pain and osteoarthritis: systematic review and meta-analysis of randomised placebo con trials. <i>BMJ</i> 2015; 350: h1225. 	
 Liang L, Cai Y, Li A, Ma C. The efficiency of intravenous acetaminophen for pain control following total knee and hip arthroplasty: a systematic review and meta-analysis. <i>Media</i> (<i>Baltimore</i>) 2017; 96: e8586. Machado GC, Maher CG, Ferreira PH, et al. Efficacy and safety of paracetamol for spinal pain and osteoarthritis: systematic review and meta-analysis of randomised placebo con trials. <i>BMJ</i> 2015; 350: h1225. 	review
 Machado GC, Maher CG, Ferreira PH, et al. Efficacy and safety of paracetamol for spinal pain and osteoarthritis: systematic review and meta-analysis of randomised placebo con trials. <i>BMJ</i> 2015; 350: h1225. 	cine
utais. Diris 2013, 330. III223.	trolled
10. Marmura MJ, Silberstein SD, Schwedt TJ. The acute treatment of migraine in adults: the American Headache Society evidence assessment of migraine pharmacotherapies. <i>Heada</i>	che 2015;
JJ. 5-20. 11 Merashly M. Uthman I. Management of knee osteoarthritis: an evidence-based review of treatment options. <i>J. Mod. Liban</i> 2012: 60: 237-242	
12. Myers I Wielage RC Han B et al. The efficacy of duloxetine non-steroidal anti-inflammatory drugs and opioids in osteoarthritis: a systematic literature review and meta-analys	is BMC
Musculoskelet Disord 2014; 15: 76.	
13. Ohlsson A, Shah PS. Paracetamol (acetaminophen) for prevention or treatment of pain in newborns. Cochrane Database Syst Rev 2016; CD011219.	
14. Orr SL, Friedman BW, Christie S, et al. Management of adults with acute migraine in the emergency department: the American Headache society evidence assessment of parenter	al
pharmacotherapies. <i>Headache</i> 2016; 56: 911-940.	
15. Wöber-Bingöl Ç. Pharmacological treatment of acute migraine in adolescents and children. <i>Paediatr Drugs</i> 2013; 15: 235-246.	
Not directly relevant to research question (includes studies with ineligible intervention or outcomes data)	
1. AlSubaie F, Zeller F, Teltelbaum J, Skroblk Y. Analgesia in neurocritical care: systematic review of the literature. Can J Neurol Sci 2014; 41 (Suppl 1): S35.	
2. Amundsen S, Nordeng H, Nezvalová-Henriksen K, et al. Pharmacological treatment of migraine during pregnancy and breastfeeding. <i>Nat Rev Neurol</i> 2015; 11: 209-219.	
3. Azari L, Santoso JT, Osborne SE. Optimal pain management in total abdominal hysterectomy. <i>Obstet Gynecol Surv</i> 2013; 68: 215-227.	
4. Basurto Ona X, Uriona Tuma SM, Martínez García L, et al. Drug therapy for preventing post-dural puncture headache. Cochrane Database Syst Rev 2013; CD001792.	
5. Batley SE, Prasad V, Vasdev N, et al. Post-operative pain management in patients undergoing robotic urological surgery. Curr Urol 2016; 9: 5-11.	
6. Begley CM, Gyte GM, Devane D, et al. Active versus expectant management for women in the third stage of labour. Cochrane Database Syst Rev 2019; 2: CD00/412.	
7. Blanton E, Lamvu G, Patanwala I, et al. Non-optiod pain management in benign minimally invasive hysterectomy: a systematic review. Am J Obstet Gynecol 2017; 216: 557-567.	111.1
8. Burrer C. In newborns, oral or rectal paracetamol fails to reduce procedural pain, whereas intravenous paracetamol reduces morphine requirements after major surgery. <i>Evid Base</i> 2016; 21: 93.	a Mea
9. Chaparro LE, Smith SA, Moore RA, et al. Pharmacotherapy for the prevention of chronic pain after surgery in adults. <i>Cochrane Database Syst Rev</i> 2013;; 2013: CD008307.	mata
10. Choi IK, Lee HK, Ji I J, et al. A comparison of the efficacy and safety of non-steroidal anti-inflammatory drugs versus acetaminophen in symptom relief for the common cold: a r analysis of randomized controlled trial studies. Korean L Fam Med 2012; 24: 241-240	neta-
analysis of randomized controlled inflat studies. Korean J Fram Med 2013; 54: 241-249.	
 Cuzzonii L, Antonucci K, Failos V. Falactianno (actiannophen) effects of paracetamol NSAIDs, glucocorticoids, gabapentinoids and their combinations: a topical raview. Acta Dahl IB, Nielsen RV, Wettersley L et al. Post-operative analgesic effects of paracetamol NSAIDs, glucocorticoids, gabapentinoids and their combinations: a topical raview. Acta 	
Anaesthesiol Scand 2014; 58: 1165-1181.	
13. del Valle C, Solano JA, Rodríguez A, et al. Pain management in outpatient hysteroscopy. Gynecology and Minimally Invasive Therapy 2016; 5: 141-147.	
14. Dijkstra BM, Berben SA, van Dongen RT, et al. Review on pharmacological pain management in trauma patients in (pre-hospital) emergency medicine in the Netherlands. <i>Eur J</i> 2014; 18: 3-19.	Pain

- 15. Drewry AM, Ablordeppey EA, Murray ET, et al. Antipyretic therapy in critically ill septic patients: a systematic review and meta-analysis. Crit Care Med 2017; 45: 806-813.
- 16. Friedman BW, Rothberg S. Complementary interventions for emergency department patients with acute or sub-acute mechanical low back pain. Ann Emerg Med 2015: S114.
- 17. Hall RW, Anand KJ. Pain management in newborns. Clin Perinatol 2014; 41: 895-924.
- 18. Harley E. Ibuprofen and acetaminophen for posttonsillectomy pain. Otolaryngol Head Neck Surg. 2015; 152: 769.
- 19. Hiller A, Helenius I, Nurmi E, et al. Acetaminophen improves analgesia but does not reduce opioid requirement after major spine surgery in children and adolescents. *Spine (Phila Pa 1976)*. 2012; 37: E1225-E1231.
- 20. Hobson A, Wiffen PJ, Conlon JA. As required versus fixed schedule analgesic administration for postoperative pain in children. Cochrane Database Syst Rev 2015; CD011404.
- 21. Horváth B, Janse IC, Sibbald GR. Pain management in patients with hidradenitis suppurativa. J Am Acad Dermatol. 2015; 73(5 Suppl 1):S47-S51.
- 22. Jefferies S, Weatherall M, Young P, et al. Systematic review and meta-analysis of the effects of antipyretic medications on mortality in Streptococcus pneumoniae infections. *Postgrad Med* J 2012; 88: 21-27.
- 23. Khanna PP, Gladue HS, Singh MK, et al. Treatment of acute gout: a systematic review. Semin Arthritis Rheum 2014; 44: 31-38.
- 24. Niven DJ, Stelfox HT, Laupland KB. Antipyretic therapy in febrile critically ill adults: a systematic review and meta-analysis. J Crit Care 2013; 28: 303-310.
- 25. Meremikwu M, Logan K, Garner P. Antipyretic measures for treating fever in malaria. Cochrane Database Syst Rev 2000; CD002151.
- 26. Offringa M, Newton R. Prophylactic drug management for febrile seizures in children. Cochrane Database Syst Rev 2012; CD003031.
- 27. Petraglia AL, Maroon JC, Bailes JE. From the field of play to the field of combat: a review of the pharmacological management of concussion Neurosurgery 2012; 70: 1520-1533.
- 28. Santoro D, Satta E. Pain in Renal Disease. J Pain Palliat Care Pharmacother 2014; 28: 409-411.
- 29. Sheridan DC, Spiro DM, Meckler GD. Pediatric migraine: abortive management in the emergency department. Headache. 2014; 54: 235-245.
- 30. Sur A, Saha A, Mukherjee S, et al. Efficacy of paracetamol as first line to treat patent ductus arteriosus (PDA) in preterm infants-results from an Indian cohort. *Eur J Pediatr* 2016; 175: 1710.
- 31. Shah V, Taddio A, McMurtry CM, et al. Pharmacological and combined interventions to reduce vaccine injection pain in children and adults: systematic review and meta-analysis. *Clin J Pain* 2015; 31(10 Suppl): S38-S63.
- 32. Simon A, Leffler A. Antipyretika bei Intensivpatienten [Antipyretics in intensive care patients]. Anaesthesist. 2017; 66: 511-517.
- 33. Terrin G, Conte F, Oncel MY, et al. Paracetamol for the treatment of patent ductus arteriosus in preterm neonates: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed 2016; 101: F127-F136.
- 34. Tsang KS, Mackenney P. Can intravenous paracetamol reduce opioid use in preoperative hip fracture patients? Orthopedics 2013; 36: 20-24.
- 35. Twycross R, Pace V, Mihalyo M. Acetaminophen (paracetamol). J Pain Symptom Manage 2013; 46: 747-755.
- 36. Walker SM. Neonatal pain. Paediatr Anaesth 2014; 24: 39-48.

Ineligible comparison

- 1. Ennis ZN, Dideriksen D, Vaegter HB, et al. Acetaminophen for chronic pain: a systematic review on efficacy. Basic Clin Pharmacol Toxicol 2016; 118: 184-189.
- 2. Falch C, Vicente D, Häberle H, et al. Treatment of acute abdominal pain in the emergency room: a systematic review of the literature. Eur J Pain 2014; 18: 902-913.
- 3. Husebo BS, Achterberg W, Flo E. Identifying and managing pain in people with alzheimer's disease and other types of dementia: a systematic review. CNS Drugs 2016; 30: 481-497.
- 4. Joshi GP, Rawal N, Kehlet H, et al. Evidence-based management of postoperative pain in adults undergoing open inguinal hernia surgery. Br J Surg 2012; 99: 168-185.
- 5. Karlsen AP, Wetterslev M, Hansen SE, et al. Postoperative pain treatment after total knee arthroplasty: a systematic review. PLoS One 2017; 12: e0173107.
- 6. Martí-Carvajal A, Ramon-Pardo P, Javelle E, et al. Interventions for treating patients with chikungunya virus infection-related rheumatic and musculoskeletal disorders: a systematic review. *PLoS One* 2017; 12: e0179028.
- 7. Le May S, Ali S, Khadra C, et al. pain management of pediatric musculoskeletal injury in the emergency department: a systematic review. *Pain Res Manag* 2016; 2016: 4809394.
- 8. Wong JJ, Côté P, Ameis A, et al. Are non-steroidal anti-inflammatory drugs effective for the management of neck pain and associated disorders, whiplash-associated disorders, or non-specific low back pain? A systematic review of systematic reviews by the Ontario Protocol for Traffic Injury Management (OPTIMa) Collaboration. *Eur Spine J.* 2016; 25: 34-61.

Ineligible study type

- 1. Alshami AM. Knee osteoarthritis related pain: a narrative review of diagnosis and treatment. Int J Health Sci (Qassim) 2014; 8: 85-104.
- 2. Dunn LK, Naik BI, Nemergut EC, Durieux ME. Post-craniotomy pain management: beyond opioids. Curr Neurol Neurosci Rep 2016; 16: 93.
- 3. Ergenoglu P, Akin S, Yalcin Cok O, et al. Effect of intraoperative paracetamol on catheter-related bladder discomfort: a prospective, randomized, double-blind study. *Curr Ther Res Clin Exp* 2012; 73: 186-194.
- 4. Feltracco P, Carollo C, Barbieri S, et al. Pain control after liver transplantation surgery [published correction appears in Transplant Proc. 2015; 47: 2304]. Transplant Proc 2014; 46: 2300-2307.
- 5. Fengyan, D. Intravenous acetaminophen for perioperative pain control in adult elective neurospine surgical patients: a retrospective case-control study. AANA J 2017; 85: 181-188.

- 6. Gritsenko K, Khelemsky Y, Kaye AD, et al. Multimodal therapy in perioperative analgesia. Best Pract Res Clin Anaesthesiol 2014; 28: 59-79.
- 7. Halila GC, Czepula AIdS, Otuki MF, et al. Review of the efficacy and safety of over-the-counter medicine. Brazilian Journal of Pharmaceutical Sciences 2015; 51: 403-414.
- 8. Kwiatkowski JL, Walker P. Intravenous acetaminophen in the emergency department. J Emerg Nurs 2013; 39: 92-96.
- 9. Koh W, Nguyen KP, Jahr JS. Intravenous non-opioid analgesia for peri- and postoperative pain management: a scientific review of intravenous acetaminophen and ibuprofen. *Korean J Anesthesiol* 2015; 68: 3-12.
- 10. Moore RA, Derry C. Efficacy of OTC analgesics. Int J Clin Pract Suppl 2013: 21-25.
- 11. Moore RA, Derry S, Wiffen PJ, et al. Overview review: Comparative efficacy of oral ibuprofen and paracetamol (acetaminophen) across acute and chronic pain conditions. *Eur J Pain* 2015; 19: 1213-1223.
- 12. Patniyot IR, Gelfand AA. Acute treatment therapies for pediatric migraine: a qualitative systematic review. Headache 2016; 56: 49-70.
- 13. Preiß JC, Hoffmann JC. Schmerztherapie bei chronischer Pankreatitis und chronisch-entzündlichen Darmerkrankungen [Pain management in chronic pancreatitis and chronic inflammatory bowel diseases]. *Schmerz* 2014; 28: 294-299.
- 14. Reid MC, Shengelia R, Parker SJ. Pharmacologic management of osteoarthritis-related pain in older adults. Am J Nurs 2012; 112 (3 Suppl 1): S38-S43.
- 15. Richette P, Latourte A, Frazier A. Safety and efficacy of paracetamol and NSAIDs in osteoarthritis: which drug to recommend? Expert Opin Drug Saf 2015; 14: 1259-1268.
- 16. Shastri N. Intravenous acetaminophen use in pediatrics. Pediatr Emerg Care 2015; 31: 444-450.
- 17. Yeh YC, Reddy P. Clinical and economic evidence for intravenous acetaminophen. Pharmacotherapy 2012; 32: 559-579.

Table 5. Excluded systematic reviews on the same conditions as included reviews

Reference	Description
Allan GM, Arroll B. Prevention and treatment of the common cold: making sense of the evidence. <i>CMAJ</i> 2014; 186: 190-199.	This was not a typical systematic review - more of a descriptive narrative review therefore was excluded from consideration in the sensitivity analysis (and could also go under ineligible study type in the PRISMA diagram)
Angelopoulou MV, Vlachou V, Halazonetis DJ. Pharmacological management of pain during orthodontic treatment: a meta-analysis. <i>Orthod Craniofac Res</i> 2012; 15: 71-83.	This review included just two of the trials that were included by the more recent Monk review. To note the Monk review did not include the trial by Salmassian et al. However this would not change the direction of effect or conclusions at all, as this trial reported a positive benefit of paracetamol v placebo (for an unspecified outcome, however).
Bannuru RR, Schmid CH, Kent DM, et al. Comparative effectiveness of pharmacologic interventions for knee osteoarthritis: a systematic review and network meta-analysis. <i>Ann Intern Med</i> 2015; 162: 46-54.	This review reported an effect estimate of 0.63 (CrI, 0.39 to 0.88) for knee OA and concluded that all treatments except acetaminophen (paracetamol) showed clinically significant improvement from baseline pain. This is not discordant from our findings, that the medicine is superior to placebo, but only marginally which warrants discussion around its clinical utility.
Cetira Filho EL, Carvalho FSR, de Barros Silva PG, et al. Preemptive use of oral nonsteroidal anti-inflammatory drugs for the relief of inflammatory events after surgical removal of lower third molars: a systematic review with meta-analysis of placebo-controlled randomized clinical trials. <i>J Craniomaxillofac Surg</i> 2020; 48: 293-307.	Provided similar conclusions to the review of dental procedures we included.
da Costa BR, Reichenbach S, Keller N, et al. Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis: a network meta-analysis. <i>Lancet</i> 2017; 390: e21-e33.	This was a network meta-analysis which reported effects for paracetamol at <2000 mg, 3000 mg and 3900-4000 mg and found a statistically significant but marginal benefit for the highest dose range only. Paracetamol < 2000 mg: -0.07 (CrI -0.42 to 0.27) Paracetamol 3000 mg: -0.18 (CrI -0.68 to 0.32) Paracetamol 3900–4000 mg -0.16 (CrI -0.27 to -0.06
Enthoven WT, Roelofs PD, Deyo RA, et al. Non-steroidal anti- inflammatory drugs for chronic low back pain. <i>Cochrane Database Syst</i> <i>Rev</i> 2016;; CD012087.	This review did not include a paracetamol v placebo/no treatment comparison
Jeric M, Surjan N, Jelicic Kadic A, et al. Treatment of acute migraine attacks in children with analgesics on the World Health Organization Essential Medicines List: a systematic review and GRADE evidence synthesis. <i>Cephalalgia</i> 2018; 38: 1592-1607.	This review also concluded that paracetamol provided no benefit over placebo for migraine in children.

Liang L, Cai Y, Li A, Ma C. The efficiency of intravenous acetaminophen for pain control following total knee and hip arthroplasty: a systematic review and meta-analysis. <i>Medicine (Baltimore)</i> 2017; 96: e8586.	This review was excluded as the Guo review selected in our overview included more trials. The Liang review provides conflicting results to the Guo review as it shows some benefit of paracetamol; WMD – 0.93 (95% CI –1.17, –0.68) from 4 studies (n=865) 24 hours post total joint arthroplasty (low quality evidence) whereas the Guo review provided very low quality evidence of no benefit; SMD 0.12 (–0.13, 0.36) from a total of seven studies (n=1400). We inspected the original studies from the Guo review and re–did the analysis in accordance with best practice guidelines. Our analysis showed there is inconclusive evidence of benefit (based on very low quality evidence) from multiple dose or single dose regimens of paracetamol for knee/hip arthroplasty; MD –0.5 (–1.8, 0.9 from 2 trials, n=152) and –0.20 (–3.80, 3.46 from 1 trial, n=116) respectively.
Machado GC, Maher CG, Ferreira PH, et al. Efficacy and safety of paracetamol for spinal pain and osteoarthritis: systematic review and meta- analysis of randomised placebo controlled trials. <i>BMJ</i> 2015; 350: h1225.	Had the same conclusions as review by Leopoldino.
Marmura MJ, Silberstein SD, Schwedt TJ. The acute treatment of migraine in adults: the american headache society evidence assessment of migraine pharmacotherapies. <i>Headache</i> 2015; 55: 3-20.	Narrative review.
Merashly M, Uthman I. Management of knee osteoarthritis: an evidence- based review of treatment options. <i>J Med Liban</i> 2012; 60: 237-242.	Narrative review.
Myers J, Wielage RC, Han B, et al. The efficacy of duloxetine, non- steroidal anti-inflammatory drugs, and opioids in osteoarthritis: a systematic literature review and meta-analysis. <i>BMC Musculoskelet Disord</i> 2014; 15: 76.	This report did not provide specific results for paracetamol.
Ohlsson A, Shah PS. Paracetamol (acetaminophen) for prevention or treatment of pain in newborns. <i>Cochrane Database Syst Rev</i> 2016;; CD011219.	We included the updated 2020 Cochrane review by the same authors.
Orr SL, Friedman BW, Christie S, et al. Management of adults with acute migraine in the emergency department: the American Headache Society evidence assessment of parenteral pharmacotherapies. <i>Headache</i> 2016; 56: 911-940.	This review identified one trial which showed no difference in pain free outcome at 2 hours (3/30 in the acetaminophen group (1 g single dose infusion) and 4/30 in the placebo (saline solution) group. To note, the patient group comprised migraine +/- aura. The authors concluded that "we cannot rule out, that in some migraine attacks, such as attacks of shorter or longer duration or with higher intensity of concomitant symptoms, would significantly benefit from intravenous acetaminophen. Further studies with more patients would be required to answer this question."
Wöber-Bingöl Ç. Pharmacological treatment of acute migraine in adolescents and children. <i>Paediatr Drugs</i> 2013; 15: 235-246.	This study reported on the (Hämäläinen 1997) study which was included in the more recent Cochrane review (Richer et al., 2016) we used in our overview.

CI=confidence interval; CrI=credible interval; WMD=weighted mean difference; SMD=standardised mean difference.

Table 6. Effect estimates extracted from included reviews or calculated by us (for conditions with randomised controlled trial evidence)

A. Mean difference (95% CI) pain reduction, on 0–10 pain scale

						Quality of evidence assessment (GRADE)			
Condition	Triele	N 7	Davagatamal regiman	Effoot sizo*	D'1 (1'	T	.	Publication	
Uterine cramping/involution after birth [15]	1	N 48	0.65g single dose	-0.4 (-2.4 to 1.6)	Risk of blas No	No	Yes (x2)	Not assessed	Low ^b
Rheumatoid arthritis [16]	2	55	1g multiple doses daily for up to 17 days	-1.3 [P<0·05]	Yes (x2)	No	Yes	Not assessed	Very low ^b
Cataract surgery [19]	1	160	1g single dose 1h before surgery	-0.9 (-1.2 to -0.6)	Yes	No	Yes	Not assessed	Low ^b
Common cold headache [20]	1	379	0.5–1g single dose	-1.4 (-2.0 to -0.8)	Yes	No	Yes	Not assessed	Low ^c
Common cold sore throat [20]	1	379	0.5–1g single dose	-0.1 (-0.9 to 0.6)	Yes	No	Yes	Not assessed	Low ^c
Post-laparoscopic cholecystectomy [21]	3	146	Multiple doses up to 3g over 48h	-0.1 (-1.0 to 0.8)	Yes (x2)	No	Yes	Not assessed	Very low ^b
Catheter-related bladder discomfort [22]	1	64	15mg/kg single dose	-0.6 (-1.1 to -0.1)	Yes	No	Yes (x2)	Not assessed	Very low ^c
Early post-operative pain (at rest) [23]	9	609	2g single dose	-1.1 (-2.0 to -0.2)	Yes	Yes (x2)	No	No	Very low ^b
Preventing late post-operative pain [23]	5	328	Up to 2g single dose before or after surgery	-0.4 (-0.9 to 0.1)	Yes	Yes	Yes	Not assessed	Very low ^b
Pain after hysterosalpingography [24]	1	88	1g 30min before procedure	-0.2 (-0.3 to -0.0)	Yes	No	Yes	Not assessed	Low ^b
Pain during hysterosalpingography [24]	1	88	1g single dose 30min before procedure	0.0 (-1.0 to 1.0)	Yes	No	Yes	Not assessed	Low ^b
Post-operative pain [26]	12	837	1g single dose	-0.8 (-0.9 to -0.6)	Yes	Yes (x2)	No	No	Very low ^b
Acute low back pain [28]	1	1643	Multiple doses up to 3.99g for up to 4 weeks	0.2 (-0.1 to 0.4)	No	No	No	Not assessed	High ^a
Chronic low back pain [28]	1	72	Multiple doses up to 4g daily	0.0 (-0.1 to 0.1)	Yes	No	Yes	Not assessed	Very low (retracted) ^a
Abdominal pain [29]	1	210	15mg/kg single dose over 3min	-3.8 [p<0.001]	Yes	No	Yes	Not assessed	Low ^b
Abdominal surgery [32]	8	793	Multiple doses up to 4g	-0.3 (-0.7 to 0.0)	Yes	Yes (x2)	No	Not assessed	Very low ^b
Post-cardiac surgery [33]	3	261	Multiple doses up to 4g over 24 h	-0.7 (-1.4 to 0.0)	Yes	Yes	Yes	Not assessed	Very low ^c

						Quality of evid	lence assessme	ent (GRADE	
Condition	Trials	N 7	Dava astara al marine an	Tffact size*	5.1	.	.	Publication	
Renal colic [34]	1 1	N 152	1g single dose	-2.5 (-3.3 to -1.6)	Risk of bias Yes	Inconsistency No	Imprecision Yes	Not assessed	Low ^b
Pain in major surgery [35]	15	>524	Unspecified	-0.5 (-0.9 to -0.1)	Yes	No	No	Unclear	Low ^b
Pain during dental procedure [36]	4	107	0.5–0.65g 1h before procedure and up to 4 repeat doses	-1.2 (-1.8 to -0.5)	Yes	No	Yes	Not assessed	Low ^b
Knee and hip arthroplasty [42]	2	152	Multiple doses intravenous paracetamol 1g or propacetamol 2g	-0.5 (-1.8 to 0.9)	Yes	Yes (x2)	Yes (x2)	Not assessed	Very low ^b
Knee and hip arthroplasty [42]	1	116	Single dose intravenous paracetamol 1g	-0.2 (-3.8 to 3.5)	Yes	No	Yes (x2)	Not assessed	Very low ^b
Bariatric surgery [43]	4	349	1 g intravenous every 6h over 24h	-0.4 (-0.9 to 0.1)	Yes (x2)	No	Yes	Not assessed	Very low ^b
Knee or hip osteoarthritis [44]	5	1686	1g 4 x daily for up to 12 weeks	-0.3 (-0.6 to -0.1)	No	No	No	Not assessed	High ^a
Post-caesarean delivery [45]	5	388	1g intravenous single or multiple doses	-0.7 (-2.0 to 0.6)	Yes	Yes (x2)	Yes (x2)	Not assessed	Very low ^b
Orbital surgery [46]	1	150	1g intravenous single dose	-4.8 (-6.1 to -3.5)	Yes	No	Yes	Not assessed	Low ^b
Metastatic breast cancer [46]	1	87	1g intravenous every 6 h; 4 doses total	-1.3 (-2.3 to -0.3)	Yes	No	Yes	Not assessed	Low ^b
Reconstructive vaginal surgery [46]	1	90	1g intravenous every 6 h over 24 –h	-0.80 (-2.0 to 0.4)	No	No	Yes (x2)	Not assessed	Low ^b
Tonsillectomy in adults [47]	2	153	1g intravenous every 6 h or single dose	-0.4 (-1.0 to 0.3)	Yes (x2)	No	Yes	Not assessed	Very low ^b
Myringotomy in children [48]	1	43	15mg/kg single oral dose	-0.3 (-1.4 to 0.8)	Yes	No	Yes (x2)	Not assessed	Very low ^b
Craniotomy [49]	4	453	1g 4 x daily for up to 24h	-0.8 (-1.4, -0.3)	No	No	No	Not assessed	High⁵
Pain in newborns [50]	1	38	40mg/kg single dose 90min before heel lance	0.7 (-0.1 to 1.5)	Yes	No	Yes	Not assessed	Low ^a

B. Risk or odds ratio (95% CI)

						Quality of evid	lence assessme	ent (GRADE))
Condition	Trials	N	Paracetamol regimen	Effect size	Risk of bias	Inconsistency	Imprecision	Publication bias	Quality
Perineal pain [17]	6	797	1g single dose	RR, 2.4 (1.5–3.8)	Yes	No	No	Not assessed	Moderate ^b
Acute migraine in adults [18]	3	717	1g single dose	RR, 1.6 (1.3–1.8)	Yes	No	No	Likely downgraded	Low ^{a,†}
Postoperative dental pain in children [25]	2	100	80mg single dose	RR, 0.8 (0.5–1.2)	Yes	No	Yes	Not assessed	Low ^a
Migraine in children and adolescents [27]	1	88	10mg/kg single dose	RR, 1.4 (0.8–2.6)	Yes	No	Yes	Not assessed	Low ^b
Otitis media in children [30]	1	148	10mg/kg 3 x daily for up to 48h	RR, 0.4 (0.2–0.9)	Yes	No	Yes	Not assessed	Low ^a
Episodic tension type headache [31]	8	5890	Up to 1g single or multiple doses	RR, 1.3 (1.1–1.4)	Yes	No	No	Not assessed	Moderate ^b
Pulpitis [37] (endodontic pain)	2	57	0.325g - 1g single dose	OR, 0.5 (0.1—2.1)	Yes (x2)	Yes	Yes	Not assessed	Very low ^b

CI = confidence interval; OR = odds ratio; RR = risk ratio; x2 = two downgrades were applied.

Bold: statistically significant effects (P < 0.05). Very low quality evidence was deemed inconclusive, even if the effect estimate was statistically significant.

* Continuous pain outcomes were converted to a 0–10 pain scale; negative values favour paracetamol. For unconverted data extracted from included reviews, see Table 13.

[†] It is likely the review downgraded for publication bias despite there being fewer than ten trials.

^a GRADE/overall quality assessment rating adopted from the review.

^b GRADE rating was determined by us.

^c GRADE rating, risk of bias assessment determined by us with Cochrane risk of bias tool, and effect size estimate was extracted from original randomised controlled trial.

For the review of rheumatoid arthritis by Hazlewood [16], the two studies reported the same effect; we report only one P value.

In the review by Sin [29], the methods were reported incompletely, and it appears the "very low quality" rating in that review was not applied to the effect estimate, but instead used to describe the quality of the included trial. The GRADE rating we determined for the effect estimate in this review was "low" quality (downgraded for study limitation and imprecision).

The review by Lee [43] reported moderate level evidence of benefit for bariatric surgery, whereas we report very low quality evidence of no benefit. This is because the original meta-analysis was incorrectly performed and we downgraded overall level of evidence a further level for study limitation as one of the studies was assessed as high risk.

The review of episodic tension headache by Stephens [31] provided high quality evidence of efficacy. However, our assessment was that the level of evidence should be moderate, as there were studies at high or unclear risk of bias.

A review of post-operative pain by McNicol [26] provided low level evidence (downgraded for inconsistency and study limitation), however we downgraded a further level due to inconsistency (two downgrades applied, l^2 =90%).

Table 7. Summary of reviews that provided effect estimates, overall quality of evidence ratings and risk of bias for included randomised controlled trials

Study	Provided (appropriate) effect	Risk of bias of included studies satisfactory (AMSTAR-2, item 9)	Provided rating for effect estimate such as CRADE
Deussen et al 2011 [15]	Yes	Yes	No
Hazlewood et al 2012 [16]	Yes	Yes (Cochrane risk of bias) All trials: high risk	No
Chou et al 2013 [17]	Yes	Yes	No
Derry et al 2013 [18]	Yes	Yes	Yes
Porela-Tiihonen et al 2016 [19]	No (presented results descriptively)	Yes (Jadad rating)	No
Li et al 2013 [20]	No	Yes (Cochrane risk of bias) Bachert ⁵¹ , Ryan ⁵² : unclear risk of bias	No
Gurusamy et al 2014 [21]	Yes	Yes	No (for paracetamol monotherapy)
Bai et al 2015 [22]	No (descriptive results presented)	No (inadequate)	No
De Oliveira et al 2015 [23]	Yes	Yes (Jadad, 5 point quality scale)	No
Hindocha et al 2016 [24]	Yes	Yes	No
Ashley et al 2016 [25]	Yes	Yes	Yes
McNicol et al 2016 [26]	Yes	Yes	Yes (we revised GRADE rating)
Richer et al 2016 [27]	Yes	Yes	No
Saragiotto et al 2016 [28]	Yes	Yes	Yes
Sin et al 2016 [29]	No (presented results descriptively, effect estimate was determined from these)	Yes (Cochrane-like)	No (unclear if GRADE rating was applied to effect estimate itself)
Sjoukes et al 2016 [30]	Yes	Yes	Yes
Stephens et al 2016 [31]	Yes	Yes	Yes (we revised GRADE rating)
Blank et al 2018 [32]	Yes	Yes (Cochrane risk of bias)	No
Douzijan et al 2017 [33]	No (descriptive results presented)	No (inadequate risk of bias assessment)	No
Garcia-Pedromo et al 2017 [34]	Yes	Yes	No
Martinez et al 2017 [35] (network meta-analysis; direct effects in supplementary file)	Yes	Yes (Cochrane risk of bias)	No
Monk et al 2017 [36]	Yes	Yes	No

Study	Provided (appropriate) effect estimate	Risk of bias of included studies satisfactory (AMSTAR-2, item 9)	Provided rating for effect estimate, such as GRADE
Shirvani et al 2017 [37]	No (effect estimate provided in	Yes (Cochrane risk of bias)	No
	original review was not consistent		
	with image in forest plot)		
Wiffen et al 2016 [38] (neuropathic	NA	NA	NA
pain)			
Wiffen et al 2017 [39] (cancer pain)	NA	NA	NA
Cooper et al 2017 [40]	NA	NA	NA
Dixon et al 2018 [41]	NA	NA	NA
Guo et al 2018 [42]	No (the effect estimate provided	Yes	No
	included non-eligible studies)		
Lee et al 2019 [43]	No (error with effect estimate, this	Yes	No
	was corrected and alerted to editor		
	of journal)		
Leopoldino et al 2019 [44]	Yes	Yes	Yes
Ng et al 2019 [45]	No (effect estimate was provided	Yes	No
	but we could not use this and had to		
	determine effect estimate from		
	original placebo-controlled RCTs)		
O'Neil et al 2019 [46]	No	No	No
Tolska et al 2019 [47]	Yes	Yes	No
Campbell et al 2020 [48]	No	Yes	No
Ghaffarpsand et al 2020 [49]	No (effect estimate was provided	Yes	No
	but we could not use this and had to		
	determine effect estimate from		
	original placebo-controlled RCTs)		
Ohlsson et al 2020 [50]	Yes	Yes	Yes

GRADE= Grading of Recommendations Assessment, Development and Evaluation; NA=not applicable; RCT=Randomised Controlled Trial; SD=Standard deviation.

The review by Porela-Tiihonen [19] only reported mean pain for both groups. We used the original study to determine SD and compute effect estimate.

The review by Richer [27] did not provide a GRADE rating for the paracetamol v placebo comparison.

Publication	Outcome	Treatment (paracetamol): mean (SD)	Treatment sample size	Control (placebo or no active treatment): mean (SD)	Control sample size	Effect estimate: mean difference (95% CI)
	Effect estimates compute	ed from RCTs included ir	1 the review of th	ne common cold by Li [2	20]	
Bachert et al 2005 [51]	Headache 2h (0–10)	500mg: 4.28 (1.93)	79	5.72 (1.93)	78	-1.44 (-2.04 to -0.84)
		1000mg: 4.29 (1.99)	79	5.72 (1.93)	78	-1.43 (-2.04 to -0.82)
Bachert et al 2005 [51]	Achiness 2h (0–10)	500mg: 4.41 (2.08)	79	5.36 (2.06)	78	-0.95 (-1.60 to -0.30)
		1000mg: 4.30 (2.08)	79	5.36 (2.06)	78	-1.06 (-1.71 to -0.41)
Bachert et al 2005 [51]	Sore throat 2h	500mg: 2.77 (2.41)	79	3.08 (2.36)	78	-0.31 (-1.06 to 0.44)
	(0–10)	1000mg: 2.95 (2.31)	79	3.08 (2.36)	78	-0.13 (-0.86 to 0.60)
Bachert et al 2005 [51]	Frontal and maxillary	500mg: 1.15 (1.54)	79	1.58 (2.00)	78	-0.43 (-0.99 to 0.13)
	sinus sensitivity to percussion 2h (0–10)	1000mg: 1.11 (1.50)	79	1.58 (2.00)	78	-0.47 (-1.02 to 0.08)
Ryan et al 1987 [52] Paracetamol 650mg single dose	Pain (0-4)	2.00 (SD not reported)	32	2.09 (SD not reported)	32	-0.09 [P<0.05]
	Effect estimates compute	ed from RCTs included in	1 the review of a	bdominal pain by Sin [2	9]	
Oguzturk et al 2012 [53] [†] Paracetamol 15mg/kg	VAS 20 min (0–100)	Median, 45 (range 30–70)	70	Median, 82.5 (range 70–90)	70	-37.5 [P<0.001] Effect estimates determined from data in review
	VAS 40 min (0-100)	Median, 33 (range 30–37)	70	Median, 85 (range 74–93)	70	-52.0 [P<0.001]
Effec	ct estimates computed from	m RCTs in the review of	catheter-related	bladder discomfort by	Bai [22]	
Ergenoglu et al 2012 [54] Paracetamol 15mg/kg	VAS (0–10) 1h	1.84 (1.25)	32	2.41 (0.84)	32	-0.57 (-1.09 to -0.05)

 Table 8. Effect size estimates extracted from systematic reviews or computed from data in original publications

		Treatment (paracetamol):	Treatment	Control (placebo or no active treatment):	Control sample	Effect estimate: mean		
Publication	Outcome ffect estimates computed fro	fact estimates computed from RCTs included in the review of cardiac surgery by Douziian						
Lahtinen et al 2002 [55] Intravenous propacetamol 2g	VAS (rest) 12h (0– 10)	3.4 (2.3)	40	3.3 (2.0)	39	0.10 (-0.85 to 1.05)		
Khalil et al 2005 [56] Intravenous paracetamol 1g	VAS 12h (0–10)	4.04 (0.74)	17	4.66 (0.89)	15	-0.62 (-1.19 to -0.05)		
Cattabriga et al 2007 [57] Intravenous paracetamol 1g	VAS 12h (0–10)	1.5 (0.9)	75	2.8 (2.0)	75	-1.30 (-1.80 to -0.80)		
Pooled effect						0.69 (-1.42 to 0.03); $I^2 = 74\%$		
Note: it was only possible to obtain it	information and pool for the	ese three trials, identifie	ed from the revie	ew by Douzjian [33].				
Effect	t estimates computed from R	CTs included in the re	view of cataract	surgery by Porela Tiiho	men [19]			
Kaluzny et al 2010 [58] Intra-operative pain Oral paracetamol g	VAS (0–10)	1.45 (1.17)	80	2.17 (1.81)	80	-0.72 (-1.19 to -0.25)		
Kaluzny et al 2010 [58] Post-operative pain	VAS (0–10)	0.56 (0.61)	80	1.47 (1.39)	80	-0.91 (-1.24 to -0.58)		
	Effect estimates computed f	rom RCTs included in t	the review of kno	ee arthroplasty by Guo [42]			
Camu et al 2017 [59] Intravenous propacetamol 2g four times a day (2g propacetamol is metabolised to 1g paracetamol)	VAS (0–100)	20 (17) SD from Murata- Ooiwa, as it was the most similar study	58	18 (19) SD from Murata- Ooiwa, as it was the most similar study	28	2.00 (-6.29 to 10.3)		
Murato-Ooiwa et al 2017 [60] Intravenous paracetamol 1g every 6h	VAS (0–100)	15.3 (17)	32	26.8 (19)	34	-11.5 (-20.2 to -2.81)		

Publication	Outcome	Treatment (paracetamol): mean (SD)	Treatment sample size	Control (placebo or no active treatment): mean (SD)	Control sample size	Effect estimate: mean difference (95% CI)
Pooled effect (multiple dose trials)						-4.68 (-17.9 to 8.54) [0- 100 scale],-0.5 (-1.8 to 0.9) [0-10 scale] I ² =79%
O'Neal et al 2017 [61] Single dose intravenous paracetamol 1g	NRS (0–10)	5.6 (9.9)	57	5.8 (9.9)	59	-0.20 (-3.80 to 3.46)
	Effect estimate computed	d from RCTs in the review	of post-cranio	tomy by Ghaffarpasand [49]	
Greenberg et al 2018 [62] 1g intravenous acetaminophen or placebo upon surgical closure, and	6h VAS (0–100)	Median, 30 (IQR, 10–50) (SD, 29.6*)	63	Median, 45 (IQR, 20–60) (SD, 29.6*)	62	-15.0 (-25.4 to -4.6)
every 6h thereafter, up to 18h post- operatively	6h (VAS converted to 0–10 scale)	3.0 (2.96)	63	4.5 (2.96)	62	-1.50 (-2.54 to -0.46)
Sivakumar et al 2018 [63] 1000mg/100mL intravenous acetaminophen every 8h for 48h v 100mL 0.9% normal saline on the same schedule	VAS (0–10), 6h	5.4 (2.3) SD from Dilmen, ¹⁴ as it was the most similar study	102	5.7 (2.7) SD from Dilmen, ¹⁴ as it was the most similar study	102	-3.00 (-9.90 to 3.90)
Dilmen et al 2016 [65] Intravenous paracetamol 1g or placebo	VAS (0–10), 2h	1.90 (2.04)	20	3.05 (2.71)	18	-1.15 (-2.69 to 0.39)
Artime et al 2018 [65] Intravenous acetaminophen or placebo pre-incision and then every 6h for 24h after surgery.	VAS (0–10), 2h	2.7 (2.3) SD from Dilmen, ¹⁴ as it was the most similar study	45	3.7 (2.7) SD from Dilmen, ¹⁴ as it was the most similar study	41	-1.00 (-2.07 to 0.07)
Pooled effect estimate (excludes Verchere trial [66] as this was not truly placebo-controlled)						-0.85 (-1.44 to -0.26) (converted to 0-10 scale); I ² =27%

Publication	Outcome	Treatment (paracetamol): mean (SD)	Treatment sample size	Control (placebo or no active treatment): mean (SD)	Control sample size	Effect estimate: mean difference (95% CI)
Efj	fect estimate computed fr	om the RCTs included in	the review of p	ost-Caesarian pain by Ng	g [45]	
Altenau et al 2017 [67] 1g paracetamol intravenously or 100mL saline (placebo) every 8h for 48h for a total of 6 doses	Faces Pain Scale (0– 10) after 3rd dose	Median, 0 (IQR 0–4) SD, 2.96*	43	Median, 2 (IQR 0–5) SD, 3.70*	40	-2.00 (-3.45 to -0.55)
Towers et al 2018 [68] 1g of intravenous acetaminophen preoperatively over 15min infusion up to 4 times in 24h. The maximum amount of acetaminophen used in 24h was controlled at 4g v saline	Faces pain scale (0– 10), 24h	5.2 (2.1)	51	5.2 (2.1)	54	0.00 (-0.80 to 0.80)
Soltani et al 2015 [69] 15mg/kg intravenous paracetamol (Apotel) diluted in 100mL normal saline 15min before induction of anesthesia.	VAS 0–10, 3h	6.45 (1.51)	40	5.10 (1.86)	40	1.35 (0.61 to 2.09)
Ozmete et al 2016 [70] Intravenous 1 g paracetamol (100mL) or 0.9% NaCl solution (100mL)	VAS 0–10, 1h	2.0 (1.86) SD from Soltani, ¹⁹ as it was the most similar study	30	3.0 (1.51) SD from Soltani, ¹⁹ as it was the most similar study	30	-1.00 (-1.86 to -0.41)
Ayatollahi et al 2014 [71] 1g intravenous paracetamol 20min before the operation	VAS (0–10) 2h	5.4 (1.16)	30	7.3 (1.11)	30	-1.90 (-2.47 to -1.33)
Pooled effect estimate						$0.68 (-1.99 to 0.64) \\ I^2 = 92\%$

Publication	Outcome	Treatment (paracetamol): mean (SD)	Treatment sample size	Control (placebo or no active treatment): mean (SD)	Control sample size	Effect estimate: mean difference (95% CI)
1	Effect estimates computed j	from RCTs included in	the review of pla	ustic surgery by O'Neill	[46]	
Wladis et al 2016 [72] orbital surgery Control (no treatment) v 1g intravenous paracetamol immediately before the surgery began	Pain score (0–10) Immediate term post- operative	3.68 (3.24)	50	7.92 (3.36)	50	-4.24 (-5.53 to -2.95)
Wladis et al 2016 [72] orbital surgery Control (no treatment) v intravenous paracetamol (1g infusion within 30min of initiation of the surgery)	Pain score (0–10) Immediate term post- operative	3.12 (3.05)	50	7.92 (3.36)	50	-4.80 (-6.06 to -3.54)
Crisp et al 2017 [73] reconstructive vaginal surgery	0–100 VAS, pain at rest 18h	27.0 (25.9)	47	35.0 (33.0)	43	-8.00 (-20.3 to 4.32)
Ohnesorge et al 2009 [74] elective surgery for metastatic breast cancer 1g intravenous paracetamol 20min before operation and 4, 10 and 16h after the end of the operation	NRS (0–10) at 1h	3.8 (2.0) SD estimated from graph	26	5.1 (1.7) SD estimated from graph	27	-1.30 (-2.30 to -0.30)
Effect	t estimates computed from	RCTs included in the r	eview of otologie	cal procedures by Camp	bell [48]	
Bennie et al 1997 [75] Myringotomy in 43 children	CHEOPS, 30min 10-item scale [range 4–13]	6.1 (0.7)	11	6.4 (1.7)	11	-0.30 (-1.39 to 0.79)
Watcha et al 1992 [76] Myringotomy in children	Objective pain scale (0–10), 60min	Median, 0 (range 0– 4) SD, 1*	14	Median, 0 (range 0– 4) SD, 1*	7	0.00 (-0.91 to 0.91)

Publication	Outcome	Treatment (paracetamol): mean (SD)	Treatment sample size	Control (placebo or no active treatment): mean (SD)	Control sample size	Effect estimate: mean difference (95% CI)
	Effect estimates compu	uted from RCTs included	l in the review of	pulpitis by Shirvani [37]	
Madani et al 2013 [77]	Treatment success (no pain to cold)	2	15	3	15	0.62 (0.09 to 4.34)
Ianiro et al 2007 [78]	Treatment success (no pain to cold)	11	14	12	13	0.31 (0.03 to 3.39)
Pooled effect estimate						$\begin{array}{c} 0.47 \ (0.10 \ to \ 2.12) \\ I^2 = 0\% \end{array}$

CHEOPS=The Children's Hospital of Eastern Ontario Pain Scale; CI=confidence interval; IQR= interquartile range; MD=mean difference; NRS=Numerical Rating Scale; SD=standard deviation; VAS=visual analogue scale.

* SDs computed from reported 95% CIs or IQR (IQR/1.35).

[†] Three-arm trial with total of 210 participants.

Review	Trial	Randomisation	Allocation concealment	Blinding (participants and personnel)	Blinding (outcome assessment)	Incomplete outcome data (Attrition bias)	Selective reporting	Other bias
Sin et al 2016 [29]	Oguzturk et al 2012 [53]	Low risk	Unclear risk	Low risk	Low risk	Unclear risk	Unclear risk	Unclear risk
Guo et al 2018 [42]	Camu et al 2017 [59]	Unclear risk	Unclear risk	Low risk	Low risk	High risk	Unclear risk	Unclear risk
	O'Neal et al 2017 [61]	Low risk	Unclear risk	Low risk	Low risk	Low risk	Low risk	Unclear risk
	Murata-Ooiwa 2017 [60]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Unclear risk
Bai et al 2015 [22]	Ergenoglu et al 2012 [54]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	NA
Douzijan et al 2017 [33]	Khalil et al 2005 [56]	Unclear risk	Unclear risk	Low risk	Low risk	Low risk	High risk	NA
	Lahtinen et al 2002 [55]	Low risk	Low risk	Low risk	Low risk	Unclear risk	Unclear risk	NA
	Cattabriga et al 2007 [57]	Low risk	Low risk	Low risk	Low risk	Unclear risk	Unclear risk	NA
O'Neil et al 2019 [46]	Wladis et al 2016 [72]	High risk	High risk	Unclear risk	Unclear risk	Low risk	Unclear risk	Unclear risk
	Crisp et al 2017 [73]	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
	Ohnsorge et al 2009 [74]	Low risk	Unclear risk	Unclear risk	Unclear risk	Low risk	Unclear risk	Unclear risk
Campbell et al 2020 [48]	Bennie et al 1997 [75]	Unclear risk	Unclear risk	Unclear risk	Unclear risk	Unclear risk	Unclear risk	Unclear risk
	Watcha et al 1992 [76]	Unclear risk	Unclear risk	Unclear risk	Unclear risk	High risk	Unclear risk	Unclear risk

Table 9. Cochrane risk of bias assessments we undertook for trials because they were not undertaken in the included systematic reviews

Design	AMSTAR-2 item															
Keview	1 2 3 4 5 6 7 8 9 10 11 12 13								14	15	16					
Deussen et al 2011 [15]	1	1	1	1	1	1	1	1	1	1	NA	NA	0	NA	NA	1
Hazlewood et al 2012 [16]	1	0	0	1	0	0	0	0	1	0	NA	NA	0	0	NA	0
Chou et al 2013 [17]	1	1	1	0	1	1	1	1	1	0	1	0	0	1	1	1
Derry et al 2013 [18]	1	1	1	1	1	1	1	1	1	0	1	1	1	0	1	1
Porela-Tiihonen et al 2016 [19]	1	0	1	0	0	0	0	1	1	0	NA	NA	0	0	NA	1
Li et al 2013 [20]	1	1	1	1	1	1	1	1	1	1	NA	NA	0	0	NA	1
Gurusamy et al 2014 [21]	1	1	1	1	1	1	1	1	1	0	1	0	0	0	1	1
Bai et al 2015 [22]	1	0	1	1	1	1	0	1	0	0	NA	NA	0	0	0	1
De Oliveira et al 2015 [23]	1	0	1	1	1	1	0	1	1	0	1	0	0	1	1	1
Hindocha et al 2016 [24]	1	1	1	1	1	1	1	1	1	0	NA	NA	0	0	NA	1
Ashley et al 2016 [25]	1	1	1	1	1	1	1	1	1	1	1	1	1	1	NA	1
McNicol et al 2016 [26]	1	1	1	1	1	1	1	1	1	0	1	1	1	0	1	1
Richer et al 2016 [27]	1	1	1	1	1	1	1	1	1	1	NA	NA	0	1	1	1
Saragiotto et al 2016 [28]	1	1	1	1	1	1	1	1	1	1	1	1	1	1	NA	1
Sin et al 2016 [29]	0	1	0	1	1	1	0	1	1	0	NA	NA	0	0	NA	1
Sjoukes et al 2016 [30]	1	1	1	1	1	1	1	1	1	1	NA	NA	1	0	1	1
Stephens et al 2017 [31]	1	1	1	1	1	1	1	1	1	1	1	1	1	0	NA	1
Blank et al 2018 [32]	1	0	0	0	0	0	0	1	1	1	1	0	0	1	1	1
Douzijan et al 2017 [33]	0	0	0	0	0	0	0	1	0	0	0	0	0	0	NA	0
Garcia-Perdomo et al 2017 [34]	1	1	1	1	1	1	0	1	1	0	NA	NA	0	0	NA	1
Martinez et al 2017 [35]	1	1	1	1	1	1	0	1	1	1	1	1	0	1	0	1
Monk et al 2017 [36]	1	1	1	1	1	1	1	1	1	1	1	0	0	1	NA	1
Shirvani et al 2017 [37]	1	0	1	1	1	1	0	1	1	0	0	0	0	1	NA	1
Wiffen et al 2016 (neuropathic pain) [38]	1	1	1	1	1	1	1	1	NA	0	NA	NA	NA	NA	NA	0
Wiffen et al 2017 [39]	1	1	1	1	1	1	1	1	NA	0	NA	NA	NA	NA	NA	0
Cooper et al 2017 [40]	1	1	1	1	1	1	1	1	NA	0	NA	NA	NA	NA	NA	1
Dixon et al 2018 [41]	1	0	1	1	0	0	0	NA	NA	1	NA	NA	NA	NA	NA	1
Guo et al 2018 [42]	1	0	0	1	1	1	0	1	1	0	0	0	0	0	NA	1
Lee et al 2019 [43]	1	1	1	1	1	1	0	1	1	1	0	1	1	1	0	1
Leopoldino et al 2019 [44]	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
Ng et al 2019 [45]	1	0	1	1	1	1	0	1	1	1	1	0	0	1	1	1
O'Neil et al 2019 [46]	1	0	1	1	0	0	0	1	0	0	NA	0	0	0	0	1
Tolska et al 2019 2019 [47]	1	0	1	1	1	0	0	1	1	0	1	0	0	1	1	1
Campbell et al 2020 [48]	1	0	1	1	0	0	0	1	1	1	NA	0	0	0	0	1
Ghaffarpasand et al 2020 [49]	1	0	1	1	1	1	0	1	1	1	0	0	0	1	1	1
Ohlsson et al 2020 [50]	1	1	0	1	1	1	1	1	1	0	NA	NA	1	0	NA	1

Table 10. AMSTAR-2 ratings for the 36 included systematic reviews

Although the use of NA (not applicable) is not advised in AMSTAR-2, some items could not be assessed for reviews that included no randomised controlled trials (RCTs) or only one eligible RCT. Shaded areas are critical items. AMSTAR-2 items are as follows: 1. PICO question defined (Patient/population, Intervention, Comparison, Outcome) 2. a priori methods i.e. registered or published protocol, 3. Explanation of study selection 4. Comprehensive literature search 5. Duplicate study selection 6. Duplicate data extraction 7. List of excluded studies included and justification provided 8. List of included studies and justification for inclusion 9. Risk of bias (ROB) assessment satisfactory 10. Funding source disclosed 11. Appropriate statistical combination of results 12. Impact of ROB assessment on statistical analysis provided 13. ROB accounted for when interpreting results 14. Explanation and discussion of heterogeneity where applicable 15. Assessment of publication bias 16. Review authors reported potential conflict of interest.

Sin [29] used a Cochrane-like tool, but the GRADE rating does not appear to have been applied to the effect estimate of interest. Monk [36] did not account for ROB assessment when interpreting the result of the paracetamol vs placebo comparison.

	Advorse event (AE)	Triole	Effect size estimate: RR (95%	Disk of				
Condition	type	sample size	indicated	Bias	Inconsistency	Imprecision	Publication bias	Quality
Uterine cramping and involution after birth [15]	Any AE	1 RCT, n=48	2.36 (0.95-5.88)	No	No	Yes	Not assessed	Moderate ^b
Rheumatoid arthritis and rheumatoid synovitis [16]	AE	3 RCTs, n=84	Qualitative results report no difference in total AE or withdrawals	Yes (x2)	Unclear	Yes	Not assessed	Very low ^b
Perineal pain in early post partum period [17]	Non-serious AE– maternal nausea	1 RCT, n=232	0.18 (0.01–3.66)	Yes (unclear risk)	No	Yes (x2)	Not assessed	Very low ^b
Perineal pain in early post partum period [17]	Non-serious AE – maternal sleepiness	1 RCT, n=232	0.89 (0.18–4.30)	Yes (unclear risk)	No	Yes (x2)	Not assessed	Very low ^b
Perineal pain in early post partum period [17]	Non-serious AE – maternal bowel movements at doses 500 mg to 650 mg	1 RCT, n=132	1.08 (0.44–2.66)	Yes (unclear risk)	No	Yes (x2)	Not assessed	Very low ^b
Perineal pain in early post partum period [17]	Non-serious AE – maternal bowel movements at doses 1000 mg	1 RCT, n=131	0.94 (0.40–2.18)	Yes (unclear risk)	No	Yes (x2)	Not assessed	Very low ^b
Acute migraine in adults [18]	At least 1 AE	4 RCTs, n=1293	0.78 (0.64–0.95)	Yes	No	No	Yes (downgraded)	Low ^a
Cataract surgery [19]	AE	1 RCT, n=160	"no AE reported in either the paracetamol group or vitamin C group"	Yes (unclear risk)	No	Yes	Not assessed	Low ^b
Laparoscopic cholecystectomy [21]	Serious AE	1 RCT, n=69	2.18 (0.21–22.96)	Yes	No	Yes (x2)	Not assessed	Very low ^b
Prevention of post-operative pain [23]	Incidence of nausea and or vomiting	3 RCTs, n=213	OR, 0.25 (0.13–0.47) NNT, 3.3 (2.3–5.9)	Yes	No	Yes	Not assessed	Low ^b
Postoperative pain (paracetamol vs placebo) [26]	Any AE	12 RCTs, n=950	1.06 (0.93–1.19)	Yes (x2)	No	Yes	No	Very low ^b

Table 11. Adverse events reported by included systematic reviews

Condition	Adverse event (AE) type	Trials, sample size	Effect size estimate: RR (95% CI), unless otherwise indicated	Risk of Bias	Inconsistency	Imprecision	Publication bias	Quality
Post-operative pain (propacetamol vs placebo) [26]	Any AE	10 RCTs, n=1409	1.17 (1.02–1.35)	Yes	No	No	No	Low ^b
Post-operative pain paracetamol [26]	Serious AE	6 RCTs, n=634	1.12 (0.19–6.59)	Yes	No	Yes	Not assessed	Low ^b
Post-operative pain propacetamol [26]	Serious AE	5 RCTs, n=336	0.0 (0.0–0.0)	Yes	No	No	Not assessed	Moderate ^b
Migraine in children and adolescents [27]	AE	1 RCT, n=88	"No significant difference"	Yes	No	Yes	Not assessed	Low ^b
Low back pain [28]	Any AE	1 RCT, n=1624	1.07 (0.86–1.33)	No	No	No	Not assessed	High ^a
Low back pain [28]	Serious AE (up to 12 weeks follow up)	1 RCT, n=1624	0.90 (0.30-2.67)	No	No	Yes	Not assessed	Moderate ^b
Abdominal pain [29]	AE – new onset or worsening of nausea or vomiting	1 RCT, n=140	13 (19%) patients receiving paracetamol, and one receiving placebo (1%).	Yes	No	Yes	Not assessed	Low ^b
Otitis media in children [30]	AE	1 RCT, n=148	1.03 (0.21–4.93)	Yes	No	Yes (x2)	Not assessed	Very low ^a
Episodic tension type headache [31]	Any AE	11 RCTs, n=5605	1.12 (0.94–1.32)	No	No	No	No	High ^a
Episodic tension type headache [31]	Gastrointestinal AE	10 RCTs, n=5526	1.12 (0.86–1.45)	No	No	Yes	No	Moderate ^b
Episodic tension type headache [31]	Gastrointestinal AE	4 RCTs, n=4036	1.47 (0.83–2.61)	No	No	Yes	Not assessed	Moderate ^b
Post-cardiac surgery [33]	Nausea and vomiting	1 RCT, n=32 (Khalil)	Lower incidence of nausea, but not vomiting [P<0.05] less sedation (at 12 and 18h with paracetamol P<0.05)	Yes	No	Yes	Not assessed	Low ^b
Post-cardiac surgery [33]	Nausea and vomiting	1 RCT, n=113 (Cattabriga)	"No difference in the rate of nausea and vomiting"	Yes	No	Yes	Not assessed	Low ^b
Renal colic [34]	At least 1 AE	1 RCT, n=152	Original trial cites no difference: 1.52 (0.67–3.46) (Bektas)	Yes	No	Yes	Not assessed	Low ^b

			Effect size estimate: RR (95%					
	Adverse event (AE)	Trials,	CI), unless otherwise	Risk of				
Condition	type	sample size	indicated	Bias	Inconsistency	Imprecision	Publication bias	Quality
Major surgery 2017 [35]	Serious AE	3 RCTs, n=	OR, 3.09 (0.33–28.8)	Yes	No	Yes (x2)	Not assessed	Very low ^b
		230		(unclear risk)				
Bariatric surgery [43]	Swelling of the face	AE reported	"One patient in the IV	Yes	No	Yes	Not assessed	Low ^b
	and rash	for only 1	acetaminophen group					
		RCT, n=99	experienced generalized					
			swelling of the face and had a					
			rash, which then led this patient					
			to be removed from the study"					
Spinal pain and osteoarthritis	Liver AE (spinal pain	3 RCTs,	3.8 (1.9–7.4)	Yes	No	No	Not assessed	Moderate ^b
[44]	and osteoarthritis)	n=1237						
Spinal pain and osteoarthritis	Serious AE (spinal	6 RCTs,	1.4 (0.7–2.5)	Yes	No	Yes	Not assessed	$\operatorname{Low}^{\mathrm{b}}$
[44]	pain and	n=3209						
	osteoarthritis)							
Spinal pain and osteoarthritis	Any AE (spinal pain	8 RCTs,	1.0 (0.9–1.1)	Yes	No	No	Not assessed	Moderate ^b
[44]	and osteoarthritis)	n=3252						
Post-caesarean delivery [45]	AE	1 RCT, n=60	One study (Ozmete, 2016)	Yes	Yes	Yes	Not applicable	Very low ^b
			reported no significant					
			difference in AE					
Orbital surgery [46]	AE – various	1 RCT, n=150	Reported no significant	Yes	No	Yes	Not assessed	Low ^b
			complications or AE					
Reconstructive vaginal	AE – various	1 RCT, n=90	Reported no significant	No	No	Yes	Not assessed	Moderate ^b
surgery [46]			complications or AE					· · ·
Elective surgery for	AE – various	1 RCT, n=87	Did not report an increased risk	Yes	No	Yes	Not assessed	Low ^b
metastatic breast cancer [46]			of nausea, vomiting or sedation					· · ·
Myringotomy in Children	Nausea and vomiting	Unclear	AE reported in 7% of children	Yes	No	Yes	Not assessed	Low ^b
[48]			receiving acetaminophen. No					
			comparison with placebo					

NNT=number needed to treat; OR=odds ratio; RCT=randomised controlled trial; RR=risk ratio; (x2) = two downgrades applied.

 ^a GRADE/overall quality assessment rating adopted from review.
 ^b GRADE rating determined by us.
 We report adverse events as "any adverse events" or as "serious adverse events" (life-threatening events or events resulting in hospital admission) if the definition in the systematic review was sufficiently clear.

Table 12. Sensitivity analysis, applying only one downgrade for each GRADE domain, when appropriate (for conditions with randomised controlled trial evidence)*

A. Mean difference (95% CI) pain reduction, on 0–10 pain scale

					Quality of evidence assessment (GRADE)					
Condition	Trials	N	Paracetamol regimen	Effect size*	Risk of bias	Inconsistency	Imprecision	bias	Quality	
Uterine cramping/involution after birth [15]	1	48	0.65g single dose	-0.4 (-2.4 to 1.6)	No	No	Yes	Not assessed	Moderate ^b	
Rheumatoid arthritis [16]	2	55	1g multiple doses daily for up to 17 days	-1.3 [P<0·05]	Yes	No	Yes	Not assessed	Low ^b	
Cataract surgery [19]	1	160	1g single dose 1h before surgery	-0.9 (-1.2 to -0.6)	Yes	No	Yes	Not assessed	Low ^b	
Common cold headache [20]	1	379	0.5–1g single dose	-1.4 (-2.0 to -0.8)	Yes	No	Yes	Not assessed	Low ^c	
Common cold sore throat [20]	1	379	0.5–1g single dose	-0.1 (-0.9 to 0.6)	Yes	No	Yes	Not assessed	Low ^c	
Post-laparoscopic cholecystectomy [21]	3	146	Multiple doses up to 3g over 48h	-0.1 (-1.0 to 0.8)	Yes	No	Yes	Not assessed	Low ^b	
Catheter-related bladder discomfort [22]	1	64	15mg/kg single dose	-0.6 (-1.1 to -0.1)	Yes	No	Yes	Not assessed	Low ^c	
Early post-operative pain (at rest) [23]	9	609	2g single dose	-1.1 (-2.0 to -0.2)	Yes	Yes	No	No	Low ^b	
Preventing late post-operative pain [23]	5	328	Up to 2g single dose before or after surgery	-0.4(-0.9 to 0.1)	Yes	Yes	Yes	Not assessed	Very low ^b	
Pain after hysterosalpingography [24]	1	88	1g 30min before procedure	-0.2 (-0.3 to -0.0)	Yes	No	Yes	Not assessed	Low ^b	
Pain during hysterosalpingography [24]	1	88	1g single dose 30min before procedure	0.0 (-1.0 to 1.0)	Yes	No	Yes	Not assessed	Low ^b	
Pain during dental procedure [36]	4	107	0.5–0.65g 1h before procedure and up to 4 repeat doses	-1.2 (-1.8 to -0.5)	Yes	No	Yes	Not assessed	Low ^b	
Post-operative pain [26]	12	837	1g single dose	-0.8 (-0.9 to -0.6)	Yes	Yes	No	No	Low ^a	
Acute low back pain [28]	1	1643	Multiple doses up to 3.99g for up to 4 weeks	0.2 (-0.1 to 0.4)	No	No	No	Not assessed	Highª	
Chronic low back pain [28]	1	72	Multiple doses up to 4g daily	0.0 (-0.1 to 0.1)	Yes	No	Yes	Not assessed	Very low (retracted) ^a	
Abdominal pain [29]	1	210	15mg/kg single dose over 3min	-3.8 [p<0.001]	Yes	No	Yes	Not assessed	Low ^b	

					Quality of evidence assessment (GRADE)					
		3.7						Publication		
	Trials	N	Paracetamol regimen	Effect size*	Risk of bias	Inconsistency	Imprecision	bias	Quality	
Abdominal surgery [32]	8	793	Multiple doses up to 4g	-0.3 (-0.7 to 0.0)	Yes	Yes	No	assessed	very low	
Post-cardiac surgery [33]	3	261	Multiple doses up to 4g over 24 h	-0.7 (-1.4 to 0.0)	Yes	Yes	Yes	Not assessed	Very low ^c	
Renal colic [34]	1	152	1g single dose	-2.5 (-3.3 to -1.6)	Yes	No	Yes	Not assessed	Low ^b	
Pain in major surgery [35]	15	>524	Unspecified	-0.5 (-0.9 to -0.1)	Yes	No	No	Unclear	Low ^b	
Knee and hip arthroplasty [42]	2	152	Multiple doses intravenous paracetamol 1g or propacetamol 2g	-0.5 (-1.8 to 0.9)	Yes	Yes	Yes	Not assessed	Very low ^b	
Knee and hip arthroplasty [42]	1	116	Single dose intravenous paracetamol 1g	-0.2 (-3.8 to 3.5)	Yes	No	Yes	Not assessed	Low ^b	
Bariatric surgery [43]	4	349	1 g intravenous every 6h over 24h	-0.4 (-0.9 to 0.1)	Yes	No	Yes	Not assessed	Low ^b	
Knee or hip osteoarthritis [44]	5	1686	1g 4 x daily for up to 12 weeks	-0.3 (-0.6 to -0.1)	No	No	No	Not assessed	High ^a	
Post-caesarean delivery [45]	5	388	1g intravenous single or multiple doses	-0.7 (-2.0 to 0.6)	Yes	Yes	Yes	Not assessed	Very low ^b	
Orbital surgery [46]	1	150	1g intravenous single dose	-4.8 (-6.1 to -3.5)	Yes	No	Yes	Not assessed	Low ^b	
Metastatic breast cancer [46]	1	87	1g intravenous every 6 h; 4 doses total	-1.3 (-2.3 to -0.3)	Yes	No	Yes	Not assessed	Low ^b	
Reconstructive vaginal surgery [46]	1	90	1g intravenous every 6 h over 24 –h	-0.80 (-2.0 to 0.4)	No	No	Yes	Not assessed	Moderate ^b	
Tonsillectomy in adults [47]	2	153	1g intravenous every 6 h or single dose	-0.4 (-1.0 to 0.3)	Yes	No	Yes	Not assessed	Low ^b	
Myringotomy in children [48]	1	43	15mg/kg single oral dose	-0.3 (-1.4 to 0.8)	Yes	No	Yes	Not assessed	Low ^b	
Craniotomy [49]	4	453	1g 4 x daily for up to $24h$	-0.8 (-1.4, -0.3)	No	No	No	Not assessed	High ^b	
Pain in newborns [50]	1	38	40mg/kg single dose 90min before heel lance	0.7 (-0.1 to 1.5)	Yes	No	Yes	Not assessed	Low ^a	

B. Risk or odds ratio (95% CI)

					Quality of evidence assessment (GRADE)					
Condition	Trials	N	Paracetamol regimen	Effect size	Risk of bias	Inconsistency	Imprecision	Publication bias	Quality	
Perineal pain [17]	6	797	1g single dose	RR, 2.4 (1.5–3.8)	Yes	No	No	Not assessed	Moderate ^b	
Acute migraine in adults [18]	3	717	1g single dose	RR, 1.6 (1.3–1.8)	Yes	No	No	Likely downgraded	Low ^{a,†}	
Postoperative dental pain in children [25]	2	100	80mg single dose	RR, 0.8 (0.5–1.2)	Yes	No	Yes	Not assessed	Low ^a	
Migraine in children and adolescents [27]	1	88	10mg/kg single dose	RR, 1.4 (0.8–2.6)	Yes	No	Yes	Not assessed	Low ^b	
Otitis media in children [30]	1	148	10mg/kg 3 x daily for up to 48h	RR, 0.4 (0.2–0.9)	Yes	No	Yes	Not assessed	Low ^a	
Episodic tension type headache [31]	8	5890	Up to 1g single or multiple doses	RR, 1.3 (1.1–1.4)	Yes	No	No	Not assessed	Moderate ^b	
Pulpitis [37] (endodontic pain)	2	57	0.325g – 1g single dose	OR, 0.5 (0.1—2.1)	Yes	Yes	Yes	Not assessed	Very low ^b	

CI = confidence interval; OR = odds ratio; RR = risk ratio.

Bold: statistically significant effects (P < 0.05). Very low quality evidence was deemed inconclusive, even if the effect estimate was statistically significant.

* Continuous pain outcomes were converted to a 0–10 pain scale; negative values favour paracetamol. Shaded boxes indicate cells that differ from those in the main analysis (Table 6).

[†] It is likely the review downgraded for publication bias despite there being fewer than ten trials.

^a GRADE/overall quality assessment rating adopted from the review.

^bGRADE rating was determined by us.

^cGRADE rating, risk of bias assessment determined by us with Cochrane risk of bias tool, and effect size estimate was extracted from original randomised controlled trial.

For the review of rheumatoid arthritis by Hazlewood [16], the two studies reported the same effect; we report only one *P* value.

Table 13. Summary of all effect estimates directly extracted from reviews or directly determined for our review

A. Mean difference (95% CI) pain reduction

Condition	Trials	N	Outcome measure	Effect size	Risk of bias	Inconsistency	Imprecision	bias	Quality
Uterine cramping [15]	1	48	Pain intensity (0-3)	-0.12 (-0.71 to 0.47)	No	No	Yes (x2)	Not assessed	Low ^b
Rheumatoid arthritis [16]	2	55	Mean pain relief (0-3) at 1 h (0 no pain relief, 3 complete pain relief)	0.4 [1.2 vs 0.8 p<0.05] (favouring paracetamol)	Yes (x2)	No	Yes	Not assessed	Very Low ^b
Rheumatoid synovitis	1	30	Mean (%) maximum pain relief in the immediate term	14.9% [50.7% vs 35.8% p<0.05] (favouring paracetamol)	Yes	No	Yes	Not assessed	Low ^b
Cataract surgery [19]	1	160	Postoperative pain (VAS 0–10)	-0.91 (-1.24 to - 0.58) 95% CI determined from SD	Yes (unclear risk)	No	Yes	Not assessed	Low ^b
Common cold [20]	1	379	Sore throat at 2 h (0–10) with 500 mg dose. Data from Bachert trial [51]	-0.31 (1.06 to 0.44)	Yes	No	Yes	Not assessed	Low ^c
Common cold [20]	1	379	Sore throat at 2 h (0–10) with 1000 mg dose. Data from Bachert trial [51]	-0.13 (-0.86 to 0.60)	Yes	No	Yes	Not assessed	Low ^c
Common cold [20]	1	379	Frontal and maxillary sinus sensitivity to percussion at 2 h (0–10) with 500 mg dose. Data from Bachert trial [51]	-0.43 (-0.99 to 0.13)	Yes	No	Yes	Not assessed	Low ^c
Common cold [20]	1	379	Frontal and maxillary sinus sensitivity to percussion at 2 h (0–10) with 1000 mg dose. Data from Bachert trial [51]	-0.47 (-1.02 to 0.08)	Yes	No	Yes	Not assessed	Low ^c

Common cold [20]	1	64	Pain intensity at 1 h (4 point pain scale no pain to severe pain) with a 650 mg dose of paracetamol. Data from Ryan trial [52]	-0.09 [p<0.05] (2.00 vs 2.09 paracetamol vs placebo groups respectively)	Yes	No	Yes (x2)	Not assessed	Very Low ^c
Common cold [20]	1	379	Headache at 2 h (0–10; 0=none, 10=severe) with 500 mg dose. Data from Bachert trial [51].	-1.44 (-2.04 to - 0.84)	Yes	No	Yes	Not assessed	Low ^c
Common cold [20]	1	379	Headache at 2 h (0–10; 0=none, 10=severe) with 1000 mg dose. Data from Bachert trial [51].	-1.43 (-2.04 to - 0.82)	Yes	No	Yes	Not assessed	Low ^c
Common cold [20]	1	379	Achiness at 2 h (0–10; 0=none, 10=severe) with 500 mg dose. Data from Bachert trial [51].	-0.95 (-1.60 to - 0.30)	Yes	No	Yes	Not assessed	Low ^c
Common cold [20]	1	379	Achiness at 2 h (0–10; 0=none, 10=severe) with 1000 mg dose. Data from Bachert trial [51].	-1.06 (-1.71 to - 0.41)	Yes	No	Yes	Not assessed	Low ^c
Laparoscopic cholescystectomy [21]	3	146	Pain (0–10 VAS) 4 to 8 h after laparoscopic cholecystectomy	-0.10 (-1.02 to 0.82)	Yes (x2)	No	Yes	Not assessed	Very Low ^b
Catheter related bladder discomfort (percutaneous nephrolithotomy) [22]	1	64	Intensity of catheter- related bladder discomfort (CRBD) at 1 h. Data from the Ergenoglu trial [54]	-0.57 (-1.09 to - 0.05) 95% CI determined from SDs	Yes	No	Yes (x2)	Not assessed	Very Low ^c
Prevention of late post-operative pain [23]	5	328	Late postoperative pain (24 h) at rest (0–10)	WMD, -0.4 (-0.9, 0.05)	Yes	Yes	Yes	Not assessed	Very low ^b

Prevention of early post-operative pain [23]	3	214	Early post-operative pain at movement (0 to 4 h) (0–10)	WMD, -1.9 (-2.80 to -1.0)	Yes	Yes	Yes	Not assessed	Very low ^b
Prevention of early post-operative pain [23]	9	609	Early postoperative pain at rest (0 to 4h) (0–10 NRS)	WMD, -1.1 (-2.0 to -0.20)	Yes	Yes (x2) I ² =87%	No	No	Very low ^b
Hysterosalpingography [24]	1	88	Pain (0–100) 30 min after hysterosalpingography	-1.61 (-2.94 to - 0.28)	Yes	No	Yes	Not assessed	Low ^b
Hysterosalpingography [24]	1	88	Pain (0–100) during hysterosalpingography	0.07 (-9.92 to 10.06)	Yes	No	Yes	Not assessed	Low ^b
Post-operative pain [26]	12	837	Pain (VAS 0–100) following administration of intravenous paracetamol or propacetamol	-7.48 (-8.98 to - 5.97)	Yes	Yes (x2) I ² =90%	No	No	Very Low ^b (original rating was Low)
Chronic low back pain [28]	1	72	Pain (0–100) at 1 day	0.00 (-9.70 to 9.70)	Yes	No	Yes	Not assessed	Very Low ^a (trial retracted)
Acute low back pain [28]	1	1643	Pain (0–100) at 1 week	1.49 (-1.30 to 4.28)	No	No	No	Not assessed	High ^a
Abdominal pain [29]	1	210	VAS (0–100) at 20 min. Data from Oguzturk trial [53]	-37.5 [p< 0.001]	Yes	No	Yes	Not assessed	Low ^b
Abdominal pain [29]	1	210	VAS (0–100) at 40 min. Data from Oguzturk trial [53]	-52.0 [p< 0.001]	Yes	No	Yes	Not assessed	Low ^b
Abdominal surgery [32]	8	793	24-hour pain score (0– 10)	-0.34 (-0.69 to 0.01)	Yes	Yes (x2) I ² =92%	No	Not assessed	Very Low ^b
Cardiac surgery [33]	3	261	Pain scores (VAS at rest 0–10)	-0.69 (-1.42 to 0.03)	Yes (unclear risk)	Yes (I ² =74%)	Yes	Not assessed	Very Low ^c
Renal colic [34]	1	152	Pain at 15 min (0–100)	-24.77 (-33.19 to - 16.35)	Yes	No	Yes	Not assessed	Low ^b
Major surgery [35]	15	>524	Pain (0–100) – direct effect	-4.9 (-8.8 to -1.0)	Yes	No	No	Unclear	Low ^b
Dental pain/orthodontic treatment [36]	4	107	Pain (VAS) 0–100 at 2 h	-11.90 (-18.36 to - 5.44)	Yes (unclear risk)	No	Yes	Not assessed	Low ^b
Neuropathic pain [38]	-	-	-	-	-	-	-	-	Not

									applicable
Cancer pain in adults [39]	-	-	-	-	-	-	-	-	Not applicable
Non-cancer pain in children and adolescents [40]	-	-	-	-	-	-	-	-	Not applicable
Hip fracture [41]	-	-	-	-	-	-	-	-	Not applicable
Knee and hip arthroplasty [42]	2	152	Pain scores at 24 h (0– 100 pain scale) with multiple dose regimen	-4.68 (-17.91 to 8.54)	Yes	Yes (x2) I ² =79%	Yes (x2)	Not assessed	Very Low ^b
Knee and hip arthroplasty [42]	1	116	Pain scores at 24 h (0– 10 pain scale) with single dose regimen	-0.20 (-3.80 to 3.46)	Yes (unclear risk)	No	Yes (x2)	Not assessed	Very Low ^b
Bariatric surgery [43]	4	349	VAS (0–10) immediate term	-0.39 (-0.88 to 0.10)	Yes (x2)	No	Yes	Not applicable	Very Low ^b
Knee and hip osteoarthritis [44]	5	1686	Immediate term pain (0– 100 scale)	-3.3 (-5.8 to -0.8)	No	No	No	Not assessed	High ^a
Knee and hip osteoarthritis [44]	7	2355	Short term pain (0–100) scale	-3.23 (-5.43 to -1.02)	No	No	No	Not assessed	High ^a
Post-caesarean pain [45]	5	388	Pain scale (0–10) within 24 h	-0.68 (-1.99 to 0.64)	Yes	Yes (x2)	Yes (x2)	Not applicable	Very Low ^b
Orbital surgery [46]	1	150	VAS 0–10 –immediate term post-operative	-4.80 (-6.06 to - 3.54)	Yes	No	Yes	Not assessed	Low ^b
Reconstructive vaginal surgery [46]	1	90	VAS (0–100) at 18 h	-8.00 (-20.32 to 4.32)	No	No	Yes (x2)	Not assessed	Low ^b
Elective surgery for metastatic breast cancer [46]	1	87	NRS (0–10) at 1 h	-1.30 (-2.30 to - 0.30)	Yes	No	Yes	Not assessed	Low ^b
Tonsillectomy in adults [47]	2	153	(0–10 pain scale)	-0.36 (-1.02 to 0.30)	Yes (x2)	No	Yes	Not applicable	Very Low ^b
Myringotomy in children [48]	1	43	CHEOPS (10 point scale) at 30 min	-0.30 (-1.39 to 0.79)	Yes	No	Yes (x2)	Not assessed	Very Low ^b
Craniotomy	4	453	VAS (0–100) within 6 h	-8.5 (-14.4 to -2.6)	No	No	No	Not applicable	High ^b
Pain in newborns	1	38	Premature Infants Pain Profile (PIPP) score (maximum score within 3 min following lancing) (0-21) with oral paracetamol up to 40 mg	1.48 (-0.11 to 3.07)	Yes	No	Yes	Not assessed	Low ^a

/kg 90 minutes before heel lance vs sterile

water

† Effect estimates expressed as Mean Difference (MD) for continuous outcomes. Negative values favour paracetamol unless otherwise indicated.

†† it is likely the review downgraded for publication bias despite there being < 10 trials.

^a GRADE/overall quality assessment rating adopted from the review

^bGRADE rating was determined by us

^c GRADE rating, ROB assessment determined by us and effect size estimate determined by us (usually extracted from original RCT). Note: ROB assessment determined using the Cochrane risk of bias tool

For the review of Rheumatoid Arthritis, the two studies showed the same effect independently, we selected one p-value only.

NRS=numerical rating scale; VAS=visual analogue scale; MD=mean difference; WMD=weighted mean difference. Note that this table includes additional extracted data not included in the main manuscript. The main manuscript focuses on the key findings.

B. Risk or odds ratio (95% CI)

					Quality of evidence assessment (GRADE)					
Condition	Trials	N	Outcome measure	Effect size	Rick of bias	Inconsistency	Imprecision	Publication	Quality	
Perineal pain [17]	5	482	50% pain relief at doses 500 mg to 650 mg	RR, 1.86 (1.20 to 2.87)	Yes (unclear risk)	No	No	Not assessed	Moderate ^b	
Perineal pain [17]	6	797	50% pain relief at doses 1000 mg	RR, 2.42 (1.53 to 3.81)	Yes (unclear risk)	No	No	Not assessed	Moderate ^b	
Acute migraine in adults [18]	3	717	Proportion of participants achieving relief of moderate to severe symptoms at 2 h	RR, 1.55 (1.32 to 1.83)	Yes	No	No	Likely downgraded	Low ^a ††	
Acute migraine in adults [18]	3	717	Proportion of pain-free participants 2 h after dosing	RR, 1.80 (1.24 to 2.62)	Yes	No	No	Likely downgraded	Low ^a ††	
Cataract surgery [19]	1	160	Proportion of patients experiencing moderate to severe pain (%)	RR, 0.10 (0.01 to 0.76)	Yes (unclear risk)	No	Yes	Not assessed	Low ^b	
Dental pain in children [25]	2	100	Postoperative pain at 6 to 7 h reported by parent	RR, 0.81 (0.53 to 1.22)	Yes	No	Yes	Not assessed	Low ^a	
Post-operative pain [26]	5	393	50% pain relief 4 h after surgery following administration of intravenous paracetamol	RR, 4.80 (2.30 to 10.00)	Yes	Yes I ² =90%	No	No	Low ^b (original rating Moderate)	
Post-operative pain [26]	8	756	50% pain relief 4 h after surgery	RR, 2.19 (1.74 to 2.77)	Yes	No	No	No	Moderate ^a	
Migraine in children and adolescents [27]	1	88	Proportion of pain-free participants 2 hours after dosing	RR, 1.40 (0.75 to 2.58)	Yes (unclear risk)	No	Yes	Not assessed	Low ^b	
Otitis media in children [30]	1	148	Proportion of children with pain at 48 h	RR, 0.38 (0.17 to 0.85)	Yes (unclear risk)	No	Yes	Not assessed	Low ^a	
Episodic tension type headache [31]	8	5890	Proportion pain free at 2 h	RR, 1.3 (1.1 to 1.4)	Yes	No	No	Not assessed	Moderate ^b (original rating High)	
Pulpal anaesthesia in patients with irreversible pulpitis [37]	2	57	Pain relief/"success" – immediate term	OR, 0.47 (0.10 to 2.12)	Yes (x2)	Yes	Yes	Not assessed	Very Low ^b	

† Effect estimates expressed as Risk Ratio (RR) or Odds Ratio (OR) for dichotomous outcomes. Negative values favour paracetamol unless otherwise indicated.

 \dagger † it is likely the review downgraded for publication bias despite there being < 10 trials.

^a GRADE/overall quality assessment rating adopted from the review

^b GRADE rating was determined by us

^c GRADE rating, ROB assessment determined by us and effect size estimate determined by us (usually extracted from original RCT). Note: ROB assessment determined using the Cochrane risk of bias tool.

NRS=numerical rating scale; VAS=visual analogue scale; RR=risk ratio; OR=odds ratio. Note that this table includes additional extracted data not included in the main manuscript. The main manuscript focuses on the key findings.

References

- 15. Deussen AR, Ashwood P, Martis R. Analgesia for relief of pain due to uterine cramping/involution after birth. Cochrane Database Syst Rev 2011; CD004908.
- 16. Hazlewood G, van der Heijde DM, Bombardier C. Paracetamol for the management of pain in inflammatory arthritis: a systematic literature review. J Rheumatol Suppl 2012; 90: 11-16.
- 17. Chou D, Abalos E, Gyte GM et al. Paracetamol/acetaminophen (single administration) for perineal pain in the early postpartum period. Cochrane Database Syst Rev 2013; CD008407.
- 18. Derry S, Moore RA. Paracetamol (acetaminophen) with or without an antiemetic for acute migraine headaches in adults. Cochrane Database Syst Rev 2013; CD008040.
- 19. Porela-Tiihonen S, Kaarniranta K, Kokki M, et al. A prospective study on postoperative pain after cataract surgery. Clin Ophthalmol (Auckland, NZ) 2013; 7: 1429-1435.
- 20. Li S, Yue J, Dong BR, et al. Acetaminophen (paracetamol) for the common cold in adults. Cochrane Database Syst Rev 2013; CD008800.
- 21. Gurusamy KS, Davidson C, Gluud C, et al. Early versus delayed laparoscopic cholecystectomy for people with acute cholecystitis. Cochrane Database Syst Rev 2013; CD005440.
- 22. Bai Y, Wang X, Li X, et al. Management of catheter-related bladder discomfort in patients who underwent elective surgery. J Endourol 2015; 29: 640-649.
- 23. De Oliveira GS, Castro-Alves LJ, McCarthy RJ. Single-dose systemic acetaminophen to prevent postoperative pain: a meta-analysis of randomized controlled trials. *Clin J Pain* 2015; 31: 86-93.
- 24. Hindocha A Beere L, O'Flynn H, et al. Pain relief in hysterosalpingography. Cochrane Database Syst Rev 2015; CD006106
- 25. Ashley PF, Parekh S, Moles DR, et al. Preoperative analgesics for additional pain relief in children and adolescents having dental treatment. Cochrane Database Syst Rev 2016; CD008392.
- 26. McNicol ED, Ferguson MC, Haroutounian S, Carr DB, Schumann R. Single dose intravenous paracetamol or intravenous propacetamol for postoperative pain. *Cochrane Database Syst Rev* 2016; CD007126.
- 27. Richer L, Billinghurst L, Linsdell MA, et al. Drugs for the acute treatment of migraine in children and adolescents. Cochrane Database Syst Rev 2016; CD005220.
- 28. Saragiotto BT, Machado GC, Ferreira ML, et al. Paracetamol for low back pain. Cochrane Database Syst Rev 2016; CD012230.
- 29. Sin B, Wai M, Tatunchak T, Motov SM. The use of intravenous acetaminophen for acute pain in the emergency department. Acad Emerg Med 2016; 23: 543-553.
- 30. Sjoukes A, Venekamp RP, van de Pol AC, et al. Paracetamol (acetaminophen) or non-steroidal anti-inflammatory drugs, alone or combined, for pain relief in acute otitis media in children. Cochrane Database Syst Rev 2016; CD011534.
- 31. Stephens G, Derry S, Moore RA. Paracetamol (acetaminophen) for acute treatment of episodic tension-type headache in adults. Cochrane Database Syst Rev 2016; CD011889.
- 32. Blank JJ, Berger NG, Dux JP, et al. The impact of intravenous acetaminophen on pain after abdominal surgery: a meta-analysis. J Surg Res 2018; 227: 234-245.
- 33. Douzjian DJ, Kulik A. Old Drug, New Route: a systematic review of intravenous acetaminophen after adult cardiac surgery. J Cardiothorac Vasc Anesth 2017; 31: 694-701.
- 34. Garcia-Perdomo HA, Echeverria-Garcia F, Lopez H et al. Pharmacologic interventions to treat renal colic pain in acute stone episodes: Systematic review and meta-analysis. *Prog Urol* 2017; 27: 654-665.
- 35. Martinez V, Beloeil H, Marret E, et al. Non-opioid analgesics in adults after major surgery: systematic review with network meta-analysis of randomized trials. *Br J Anaesth* 2017; 118: 22–31.
- 36. Monk AB, Harrison JE, Worthington HV, et al. Pharmacological interventions for pain relief during orthodontic treatment. Cochrane Database Syst Rev 2017; CD003976.
- 37. Shirvani A, Shamszadeh S, Eghbal MJ, et al. Effect of preoperative oral analgesics on pulpal anesthesia in patients with irreversible pulpitis-a systematic review and meta-analysis. *Clin Oral Investig* 2017; 21: 43-52.
- 38. Wiffen PJ, Knaggs R, Derry S, et al. Paracetamol (acetaminophen) with or without codeine or dihydrocodeine for neuropathic pain in adults. Cochrane Database Syst Rev 2016; CD012227.
- 39. Wiffen PJ, Derry S, Moore RA, et al. Oral paracetamol (acetaminophen) for cancer pain. Cochrane Database Syst Rev 2017; CD012637.

- 40. Cooper TE, Fisher E, Anderson B, et al. Paracetamol (acetaminophen) for chronic non-cancer pain in children and adolescents. Cochrane Database Syst Rev 2017; CD012539.
- 41. Dixon J, Ashton F, Baker P, et al. Assessment and early management of pain in hip fractures: The impact of paracetamol. Geriatr Orthop Surg Rehabil 2018; 9: 2151459318806443.
- 42. Guo H, Wang C, He Y. A meta-analysis evaluates the efficacy of intravenous acetaminophen for pain management in knee or hip arthroplasty. J Orthop Sci 2018; 23: 793-800.
- 43. Lee Y, Yu J, Doumouras AG, et al. Intravenous acetaminophen versus placebo in post-bariatric surgery multimodal pain management: a Meta-analysis of Randomized Controlled Trials. *Obes Surg* 2019; 29: 1420-1428.
- 44. Leopoldino AO, Machado GC, Ferreira PH, et al. Paracetamol versus placebo for knee and hip osteoarthritis. Cochrane Database Syst Rev 2019; CD013273.
- 45. Ng QX, Loke W, Yeo WS, et al. A Meta-analysis of the utility of preoperative intravenous paracetamol for post-caesarean analgesia. Medicina 2019; 55: 424.
- 46. O'Neill RC, Hayes KD, Davison SP. Safety of postoperative opioid alternatives in plastic surgery: a systematic review. Plast Reconstr Surg 2019; 144: 991-999.
- 47. Tolska HK, Hamunen K, Takala A, et al. Systematic review of analgesics and dexamethasone for post-tonsillectomy pain in adults. Br J Anaesth 2019; 123: e397-e411.
- 48. Campbell HT, Yuhan BT, Smith B, et al. Perioperative analgesia for patients undergoing otologic surgery: an evidence-based review. Laryngoscope 2020; 130: 190-199.
- 49. Ghaffarpasand F, Dadgostar E, Ilami G, et al. Intravenous acetaminophen (paracetamol) for postcraniotomy pain: systematic review and meta-analysis of randomized controlled trials. *World Neurosurg* 2020; 134: 569-576.
- 50. Ohlsson A, Shah PS. Paracetamol (acetaminophen) for prevention or treatment of pain in newborns. Cochrane Database Syst Rev 2020; CD011219.
- 51. Bachert C, Chuchalin AG, Eisebitt R, et al. Aspirin compared with acetaminophen in the treatment of fever and other symptoms of upper respiratory tract infection in adults: a multicenter, randomized, double-blind, double-dummy, placebo-controlled, parallel-group, single-dose, 6-hour dose-ranging study. *Clin Ther* 2005; 27: 993-1003.
- 52. Ryan PB, Rush DR, Nicholas TA, Graham DG. A double-blind comparison of fenoprofen, acetaminophen, and placebo in the palliative treatment of common nonbacterial upper respiratory infections. *Curr Ther Res* 1987; 41: 17-23.
- 53. Oguzturk H, Ozgur D, Turtay MG, et al. Tramadol or paracetamol do not effect the diagnostic accuracy of acute abdominal pain with significant pain relief a prospective, randomized, placebo controlled double blind study. *Eur Rev Med Pharmacol Sci* 2012; 16: 1983-1988.
- 54. Ergenoglu P, Akin S, Yalcin Cok O, et al. Effect of intraoperative paracetamol on catheter-related bladder discomfort: a prospective, randomized, double-blind study. *Curr Ther Res Clin Exp* 2012; 73: 186-194.
- 55. Lahtinen P, Kokki H, Hendolin H, et al. Propacetamol as adjunctive treatment for postoperative pain after cardiac surgery. Anesth Analg 2002; 95: 813-819.
- 56. Khalil AR, Hanafy MA, El-istekawy EM. The use of injectable paracetamol as an adjunct for postoperative pain management after off-pump fast-track coronary artery by pass grafting surgery. *Journal of the Egyptian Society of Cardiothoracic Surgery* 2005; 13: 25-33.
- 57. Cattabriga I, Pacini D, Lamazza G, et al. Intravenous paracetamol as adjunctive treatment for postoperative pain after cardiac surgery: a double blind randomized controlled trial. *Eur J Cardiothorac Surg* 2007; 32: 527-31.
- 58. Kaluzny BJ, Kazmierczak K, Laudencka A, et al. Oral acetaminophen (paracetamol) for additional analgesia in phacoemulsification cataract surgery performed using topical anesthesia Randomized double-masked placebo-controlled trial. *J Cataract Refract Surg* 2010; 36: 402-406.
- 59. Camu F, Borgeat A, Heylen RJ, et al. Parecoxib, propacetamol, and their combination for analgesia after total hip arthroplasty: a randomized non-inferiority trial. *Acta Anaesthesiologica Scandinavica* 2017; 61: 99-110.
- 60. Murata-Ooiwa M, Tsukada S, Wakui M. Intravenous acetaminophen in multimodal pain management for patients undergoing total knee arthroplasty: a randomized, double-blind, placebocontrolled trial. *J Arthroplasty* 2017; 32: 3024-3028.
- 61. O'Neal JB, Freiberg AA, Yelle MD, et al. Intravenous vs oral acetaminophen as an adjunct to multimodal analgesia after total knee arthroplasty: a prospective, randomized, double-blind clinical trial. *J Arthroplasty* 2017; 32: 3029-3033.
- 62. Greenberg S, Murphy GS, Avram MJ, et al. Postoperative intravenous acetaminophen for craniotomy patients: a randomized controlled trial. World Neurosurg 2018; 109: e554-e562.

- 63. Sivakumar W, Jensen M, Martinez J, et al. Intravenous acetaminophen for postoperative supratentorial craniotomy pain: a prospective, randomized, double-blinded, placebo-controlled trial. J Neurosurg 2018; 130: 766-722.
- 64. Dilmen OK, Akcil EF, Tunali Y, et al. Postoperative analgesia for supratentorial craniotomy. Clinical Neurol Neurosurg 2016; 146: 90-95.
- 65. Artime CA, Aijazi H, Zhang H, et al. Scheduled intravenous acetaminophen improves patient satisfaction with postcraniotomy pain management: a prospective, randomized, placebocontrolled, double-blind study. J Neurosurg Anesthesiol 2018; 30: 231-236.
- 66. Verchère E, Grenier B, Mesli A, et al. Postoperative pain management after supratentorial craniotomy. J Neurosurg Anesthesiol 2002; 14: 96-101.
- 67. Altenau B, Crisp CC, Devaiah CG, et al. Randomized controlled trial of intravenous acetaminophen for postcesarean delivery pain control. Am J Obstet Gynecol 2017; 217: 362.e1-62.e6.
- 68. Towers CV, Shelton S, van Nes J, et al. Preoperative cesarean delivery intravenous acetaminophen treatment for postoperative pain control: a randomized double-blinded placebo control trial. *Am J Obstet Gynecol* 2018; 218: 353.e1-53.e4.
- 69. Soltani G, Molkizadeh A, Amini S. Effect of intravenous acetaminophen (paracetamol) on hemodynamic parameters following endotracheal tube intubation and postoperative pain in caesarian section surgeries. *Anesth Pain Med* 2015; 5: e30062.
- 70. Ozmete O, Bali C, Cok OY, et al. Preoperative paracetamol improves post-cesarean delivery pain management: a prospective, randomized, double-blind, placebo-controlled trial. *J Clin* Anesth 2016; 33: 51-57.
- 71. Ayatollahi V, Faghihi S, Behdad S, et al. Effect of preoperative administration of intravenous paracetamol during cesarean surgery on hemodynamic variables relative to intubation, postoperative pain and neonatal apgar. *Acta clinica Croatica* 2014; 53: 272-278.
- 72. Wladis EJ, Kattato DF, De A. Intravenous acetaminophen in orbital surgery. Ophthal Plast Reconstr Surg 2016; 32: 211-213.
- 73. Crisp CC, Khan M, Lambers DL, et al. The effect of intravenous acetaminophen on postoperative pain and narcotic consumption after vaginal reconstructive surgery: a double-blind randomized placebo-controlled trial. *Female Pelvic Med Reconstr Surg* 2017; 23: 80-85.
- 74. Ohnesorge H, Bein B, Hanss R, et al. Paracetamol versus metamizol in the treatment of postoperative pain after breast surgery: a randomized, controlled trial. *Eur J Anaesthesiol* 2009; 26: 648-653.
- 75. Bennie RE, Boehringer LA, McMahon S, et al. Postoperative analgesia with preoperative oral ibuprofen or acetaminophen in children undergoing myringotomy. *Paediatric anaesthesia* 1997; **7**: 399-403.
- 76. Watcha MF, Ramirez-Ruiz M, White PF, et al. Perioperative effects of oral ketorolac and acetaminophen in children undergoing bilateral myringotomy. Can J Anaesth 1992; 39: 649-654.
- 77. Madani ZS, Haddadi A, Moghadamnia A, et al. The efficacy of premedication with ibuprofen, gelofen and acetaminophen in the depth of anesthesia in mandibular molars with irreversible pulpitis. *Afr J Pharm Pharmacol* 2013; 7: 1841-1846.
- 78. Ianiro S, Jeansonne B, McNeal S et al. The effect of preoperative acetaminophen or a combination of acetaminophen and ibuprofen on the success of inferior alveolar nerve block for teeth with irreversible pulpitis. *J Endod* 2007; 33: 11-14.