Simulation in clinical teaching and learning
Practising clinical skills and teamwork in a safe environment

Simulation-based education (SBE) is a rapidly developing discipline that can provide safe and effective learning environments for students. Clinical situations for teaching and learning purposes are created using mannequins, part-task trainers, simulated patients or computer-generated simulations. SBE has advantages over opportunistic learning, as clinical events can be scheduled, observed and repeated to consolidate learning. It also facilitates deliberate practice, enhances transfer of theoretical knowledge to the clinical context and eases transition into the workforce.

What is current Australian practice?

A report on the current use of SBE in Australian medical schools and teaching hospitals can be found on the Health Workforce Australia (HWA) website (www.hwa.gov.au/sites/uploads/simulated-learning-environments-medical-curriculum-report-201108.pdf). To further develop SBE capacity in Australia, HWA established capital funding of $46 million and recurrent funding for 2010–11 of $48 million. It has undertaken a review of existing and potential opportunities for SBE, established a mechanism for developing SBE initiatives across Australia and introduced instructor training.

What does best evidence tell us?

There is a positive relationship between SBE and learning outcomes, with participants reporting increased knowledge and displaying improved performance in simulated events. Some emerging evidence supports transfer of learning from SBE to clinical practice. Features of SBE that enhance its effectiveness include: feedback on performance, opportunities for deliberate practice, incorporating outcome measurements, matching simulation fidelity to educational objectives, skills acquisition and maintenance, and instructor training. Integrating SBE into the curriculum at the design phase ensures continuity between simulated and clinical learning environments.

Poorly designed simulation and inadequate instruction can promote negative learning; for example, if physical signs are missing, students may neglect to check for these. SBE may also encourage shortcuts, such as omitting patient consent and safety procedures, or it may foster artificial rather than genuine communication skills.

Where are the new frontiers?

Health care is increasingly being delivered by multidisciplinary teams, but inadequate communication can cause errors and inefficiencies in care. Structured information exchanges can improve communication, and SBE provides an ideal environment for learning clinical and teamwork skills (Box).

With increasing emphasis on competency assessments, there will be greater use of simulation for assessment, both for procedural skills and teamwork. While the use of SBE will continue to expand with the advent of new technologies and methods, policy development is needed to ensure its coordinated and cost-effective implementation.

Competing interests: No relevant disclosures.

Provenance: Commissioned; externally peer reviewed.

Jennifer M Weller
MD, MClEd, FRACP, BSc(Hons)
Associate Professor
Monash Medical Centre, Melbourne, VIC.

Debra Nestel
PhD, Professor
Monash University, Melbourne, VIC.

Stuart D Marshall
MHumSci, MBBS, MRCS, FRANZCA, FANZCA,
Lead Researcher and Instructor
Royal Melbourne Hospital, Melbourne, VIC.

Peter M Brooks
MD, FRACP, PhD
Instructor
University of Melbourne, Melbourne, VIC.

Jennifer J Conn
FRACP, MClEd, BSc(Hons)
Director
Centre for Medical and Simulation and Skills Workforce Institute, Auckland, NZ.

Jennifer J Conn
FRACP, MClEd, BSc(Hons)
Senior Lecturer
University of Melbourne, Melbourne, VIC.

©The Medical Journal of Australia 2012
mja.com.au

Provenance: Commissioned; externally peer reviewed.

This is an abridged version of a fully referenced article published on mja.com.au

Series Guest Editor
Jennifer J Conn
FRACP, MClEd, BSc(Hons)